Деньги не должны оцениваться по их численному количеству: если бы металл, который является всего лишь символом богатства, сам был богатством, другими словами, если бы счастье или выгоды, проистекающие из богатства, были пропорциональны количеству денег, у людей были бы основания выражать их стоимость в числовой форме и по их количеству, однако далеко не всегда бывает так, что польза денег пропорциональна их количеству: богатый человек с доходом в сотню тысяч экю не является в десять раз более счастливым, чем человек, у которого всего десять тысяч экю. Деньги представляют собой нечто большее, и как только их количество превышает определенный предел, они почти не имеют реальной ценности и не способны повысить благополучие того, кому они принадлежат: человек, обнаруживший гору золота, будет не богаче того, кто нашел всего одну кубическую морскую сажень золота.
Принцип ожидаемой полезности притягательно прямолинеен и прост: при наличии ряда вариантов следует выбирать тот вариант, который имеет максимальную ожидаемую полезность. Пожалуй, этот принцип наиболее близок к математической теории индивидуального принятия решений из всего, что у нас есть. Кроме того, модель ожидаемой полезности охватывает многие аспекты того, как люди принимают решения, поэтому она остается основным количественным инструментом среди всех тех методов, которыми пользуются социологи. Свой трактат Essai philosophique sur les probabilités («Опыт философии теории вероятностей»)[203], написанный в 1814 году, Пьер Симон Лаплас закончил такими словами: «Мы видим в этом эссе, что теория вероятностей есть в сущности не что иное, как здравый смысл, сведенный к исчислению: она заставляет оценивать с точностью то, что рациональные умы чувствуют как бы инстинктом, часто не отдавая себе в этом отчета. …Она не оставляет места для сомнения в выборе мнений и решений; ее применение позволяет сделать самый правильный выбор».
И снова мы видим все тот же принцип: математика – это продолжение здравого смысла другими средствами.
Однако ожидаемая полезность не отвечает на все вопросы. В который раз досадные сложности предстают в виде головоломки. В данном случае головоломку сформулировал военный аналитик Дэниел Эллсберг, впоследствии получивший известность как разоблачитель нелицеприятных подробностей войны во Вьетнаме, передавший прессе секретные документы Пентагона. (В математических кругах, которые бывают порой довольно ограниченными в своих взглядах, нередко можно было услышать, как об Эллсберге говорят нечто в таком роде: «Знаете, прежде чем заняться политикой, он делал поистине важную работу».)
За десять лет до своей внезапной известности, в 1961 году, Эллсберг был блестящим молодым аналитиком в корпорации RAND, консультировавшим правительство США по вопросам ядерной войны: как можно ее предотвратить, а если это невозможно, то как эффективно вести. Одновременно с этим он работал над своей докторской диссертацией по экономике в Гарвардском университете. В обеих областях своей деятельности Эллсберг много размышлял о процессе принятия решений в условиях неизвестности. В то время теория ожидаемой полезности занимала важнейшее место в математическом анализе решений. В своей фундаментальной книге Theory of Games and Economic Behavior («Теория игр и экономическое поведение»[204]) Фон Нейман и Моргенштерн[205] доказали, что все люди, подчиняющиеся определенному набору правил поведения, или аксиом,