Отчаявшихся, потерявших надежду людей, которые только что встали на путь трезвости, неизменно поощряют и призывают хотя бы на словах поддерживать лозунги, которых они еще не понимают и в которые не верят – скажем, «Медленно, но верно!», «Двигайся дальше!» или «Шаг за шагом!». Это называется «Притворяйся, пока это не станет правдой» – фраза, которая сама по себе часто используется как лозунг. Каждый, кто взял на себя Обязательство, поднимается со своего места, чтобы выступить перед другими членами группы, и начинает со слов о том, что он алкоголик, и говорит, считает ли так он сам или нет. Затем каждый из присутствующих произносит, как благодарен он за то, что сегодня трезв, а также как замечательно вместе с группой работать над выполнением Обязательства – и все это говорится даже тогда, когда человек не испытывает ни благодарности, ни удовлетворения. Вас заставляют говорить все это до тех пор, пока вы не начнете в это верить. Однажды вы спросите человека, который уже давно ведет трезвый образ жизни, сколько еще вам придется таскаться на эти треклятые собрания, а он улыбнется так, что это едва не выведет вас из себя, и скажет: пока ты не захочешь ходить на эти треклятые собрания.
Санкт-Петербург и Эллсберг
Ютили могут пригодиться при принятии решений по поводу того, что не имеет четко определенной денежной стоимости, например зря потраченное время или неприятная еда. Но о полезности необходимо говорить даже в тех случаях, когда речь идет о чем-то имеющем определенную денежную стоимость – скажем, о деньгах.
Осознание этого пришло еще в самом начале развития теории вероятностей. Подобно многим другим важным открытиям, эта идея впервые была сформулирована в виде головоломки. Даниил Бернулли описал ее в 1738 году, в труде Exposition on a New Theory of the Measurement of Risk («Опыт новой теории измерения жребия»)[194]:
Петр бросает вверх монету, пока она не упадет лицевой стороной вверх; если это произойдет после первого броска, он должен дать Павлу 1 дукат, но если только после второго – 2 дуката, после третьего – 4, после четвертого – 8 и так далее, так что после каждого броска число дукатов удваивается[195].
Очевидно, что для Павла это достаточно привлекательный сценарий игры, за участие в которой он готов выложить какую-то сумму. Но какую именно? Учитывая наш опыт с лотереями, естественный ответ сводится к тому, чтобы вычислить ожидаемую ценность суммы денег, которую Павел получит от Петра. Вероятность того, что монета упадет лицевой стороной вверх после первого же броска, составляет 50 на 50, и в этом случае Павел получит один дукат. Если после первого броска выпадет реверс, а после второго аверс (событие, которое происходит в одном из четырех случаев), Павел получит два дуката. Чтобы он получил четыре дуката, в первых трех бросках монета должна упасть так: реверс, реверс, аверс (что происходит с вероятностью 1/8). Если продолжить этот ряд и просуммировать его отдельные элементы, ожидаемая прибыль Павла составит:
(1/2) × 1 + (1/4) × 2 + (1/8) × 4 + (1/16) × 8 + (1/32) × 16 +…
или
1/2 + 1/2 + 1/2 + 1/2 +…
Данная сумма не является числом. Это