Начнем с изучения основного процесса: на S-молекулу в газе из молекул фона действуют какая-то особая сила F (это может быть сила тяжести или электрическая сила) и,
Если в какой-то произвольный момент времени начать наблюдать за S-молекулой, то можно надеяться, что попали мы как раз где-то между двумя столкновениями. Это время молекула употребит на то, чтобы в дополнение к скорости, оставшейся у нее после всех столкновений, увеличить составляющую скорости вдоль силы F. Немного погодя (в среднем через время t) она снова испытает столкновение и начнет двигаться по новому отрезку своей траектории. Стартовая скорость, конечно, будет другой, а ускорение от силы F останется неизменным.
Чтобы упростить сейчас дело, предположим, что после каждого столкновения наша S-молекула выходит на совершенно «свободный» старт. Это значит, что у нее не осталось никаких воспоминаний о прежних ускорениях под действием силы F. Такое предположение было бы разумным, если бы наша S-молекула была намного легче молекул фона, но это, конечно, не так. Позднее мы обсудим более разумное предположение.
А пока предположим, что все направления скорости S-молекулы после каждого столкновения равновероятны. Стартовая скорость имеет любое направление и не может дать никакого вклада в результирующее движение, поэтому мы не будем принимать во внимание начальную скорость после каждого столкновения. Но, кроме случайного движения, каждая S-молекула в любой момент имеет дополнительную скорость в направлении силы F, которая увеличивается
Vдр=Ft/m. (43.13)
Это наше основное соотношение, главное во всей главе. При нахождении t могут появиться всякого рода усложнения, но основной процесс определяется уравнением (43.13).
Обратите внимание, что скорость дрейфа
vдр=mF (43.14) и называть m, подвижностью. Из уравнения (43.13) следует
m=t/m. (43.15)
Подвижность пропорциональна среднему времени между столкновениями (редкие столкновения слабо тормозят S-молекулу) и обратно пропорциональна массе (чем больше инерция, тем медленнее набирается скорость между столкновениями).
Чтобы получить правильный численный коэффициент в уравнении (43.13) (а у нас он верен), нужна известная осторожность. Во избежание недоразумений нужно помнить, что мы используем коварные аргументы, и употреблять их можно только после осторожного и детального изучения. Чтобы показать, какие бывают трудности, хотя по виду вроде все благополучно, мы снова вернемся к тем аргументам, которые привели к выводу уравнения (43.13), но эти аргументы, которые выглядят вполне убедительно, приведут теперь к