Читаем Feynmann 4 полностью

Можно рассуждать так: среднее время между столкнове­ниями равно т. После столкновения частица, начав двигаться со случайной скоростью, набирает перед следующим столкно­вением дополнительную скорость, которая равна произведению времени на ускорение. Поскольку до следующего столкновения пройдет время t, то частица наберет скорость (F/m)t. В момент столкновения эта скорость равна нулю. Поэтому средняя ско­рость между двумя столкновениями равна половине окончательной скорости, а средняя скорость дрейфа равна 1/2Ft/m. (Неверно!) Этот вывод неверен, а уравнение (43.13) правильно, хотя, казалось бы, в обоих случаях мы рассуждали одинаково убедительно. Во второй результат вкралась довольно коварная ошибка: при его выводе мы фактически предположили, что все столкновения отстоят друг от друга на время t. На самом деле некоторые из них наступают раньше, а другие позже этого времени. Более короткие времена встречаются чаще, но их вклад в скорость дрейфа невелика, потому что слишком мала в этом случае вероятность «реального подталкивания вперед». Если при­нять во внимание существование распределения свободного вре­мени между столкновениями, то мы увидим, что множителю 1/2, полученному во втором случае, неоткуда взяться. Ошибка произошла из-за того, что мы, обманувшись простотой аргу­ментов, попытались слишком просто связать среднюю скорость со средней конечной скоростью. Связь между ними не столь уж проста, поэтому лучше подчеркнуть, что нам нужна средняя скорость сама по себе. В первом случае мы с самого начала искали среднюю скорость и нашли ее верное значение! Быть может, теперь вам понятно, почему мы не пытались найти точ­ного значения всех численных коэффициентов в наших элемен­тарных уравнениях?

Вернемся к нашему предположению о том, что каждое столкновение полностью стирает из памяти молекулы все о былом ее движении и что после каждого столкновения для молекулы начинается новый старт. Предположим, что наша S-молекула — это тяжелый объект на фоне более легких мо­лекул. Тогда уже недостаточно одного столкновения, чтобы отобрать у S-молекулы ее направленный «вперед» импульс. Только несколько последовательных столкновений вносят в ее движение «беспорядок». Итак, вместо нашего первоначального рассуждения предположим теперь, что после каждого столк­новения (в среднем через время т) S-молекула теряет опре­деленную часть своего импульса. Мы не будем исследовать детально, к чему приведет такое предположение. Ясно, что это эквивалентно замене времени t (среднего времени между столкновениями) другим, более длинным t, соответствующим среднему «времени забывания», т. е. среднему времени, за которое S-молекула забудет о том, что у нее когда-то был импульс, направленный вперед. Если понимать t так, то можно использовать нашу формулу (43.15) для случаев, не столь простых, как первоначальный.

§ 4. Нонная проводимость

Применим наши результаты к частному случаю. Предпо­ложим, что в сосуде, заполненном газом, содержатся также ионы — атомы или молекулы с избыточным электрическим зарядом. Схематически это выглядит так, как на фиг. 43.2.

Фиг. 43.2. Электри­ческий ток в ионизо­ванном газе.

Если две противоположные стенки сосуда сделаны из метал­лических пластин, то их можно подсоединить к полюсам батареи и создать таким образом в газе электрическое поле.

Электрическое поле будет с некоторой силой воздействовать на ионы, и они начнут свой дрейф к одной из пластин. В ре­зультате возникнет электрический ток, и газ со своими ионами будет работать как сопротивление. Выразив через скорость дрейфа ионный поток, можно рассчитать величину сопротивле­ния. Больше всего нас интересует зависимость ионного потока от приложенной к пластинам разности потенциалов V.

В нашем случае сосуд — это прямоугольный ящик, длина которого b, а площадь поперечного сечения А (см. фиг. 43.2). Если к пластинам приложена разность потенциалов V, то элек­трическое поле Е между пластинами равно V/b. (Электрический потенциал — это работа, совершаемая при переносе единичного заряда от одной пластины к другой. Сила, действующая на единичный заряд, равна Е. Если значение Е одинаково всюду между пластинами, что можно с достаточным основанием пред­положить в нашем случае, то затраченная на единичный заряд работа равна Eb, т. е. V=Eb.) В нашем случае на ионы дей­ствует сила qЕ, где q заряд иона. Скорость дрейфа иона равна произведению силы на m:

vдр=mF=mq=mqV/b. (43.16)

Электрический ток I равен потоку заряда за 1 сек. Электри­ческий ток через одну из пластин равен, таким образом, полному заряду ионов, достигающих пластины за 1 сек. Если ионы дви­жутся к пластине со скоростью vдр, то за время Т пластины достигнут те ионы, которые находились не дальше, чем на расстоянии vдрT от нее. Если в единичном объеме содержится ni. ионов, то за время Т на пластине высадится niAvдрT ионов.

Каждый ион несет заряд q, поэтому

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука