Читаем Feynmann 4 полностью

В качестве простого примера неравновесной задачи рассмотрим диффузию ионов в газе. Предположим, что в газе содержится немного ионов — электрически заряженных молекул. Если к газу приложить электрическое поле, то на каждый ион будет действовать сила, отличающаяся от сил, действующих на нейт­ральные молекулы. Если бы других молекул не было, то ион двигался бы с постоянным ускорением, пока не наткнулся бы на стенку ящика. Но наличие других молекул меняет дело: скорость иона возрастает лишь до тех пор, пока он не ударится о молекулу и не по­теряет своего импульса. После этого он снова начинает ускоряться, но вновь теряет импульс. В результате ион вынужден двигаться по ло­маному пути, хотя все же в конце концов он движется в направлении электрического поля.

Мы замечаем, таким образом, что ион «дрейфует» со средней скоростью, пропорциональной электрическому полю; чем силь­нее поле, тем быстрее движется ион. Конечно, пока существует поле и пока ион продолжает двигаться, не может быть и речи о тепловом равновесии. Система стремится прийти к равно­весию, но для этого нужно, чтобы все ионы приклеились к стенке ящика. С помощью кинетической теории возможно вычислить скорость дрейфа ионов.

Наших математических познаний еще недостаточно, чтобы точно вычислить все, что произойдет, но мы можем получить приближенное решение, которое правильно передаст все суще­ственные особенности явления. Мы можем определить зави­симость эффекта от давления, температуры и т. п., но не в наших силах вычислить точно все коэффициенты, стоящие перед этими сомножителями. Поэтому не будем мучить себя заботой о точных значениях таких коэффициентов. Получить их можно только после очень тонкого математического анализа.

Прежде чем рассуждать о том, что происходит в отсутствие равновесия, посмотрим повнимательнее на равновесный газ. Необходимо, например, знать среднее время между двумя последовательными столкновениями молекулы.

Каждая молекула непрерывно сталкивается с другими молекулами. Происходят все эти столкновения, конечно, случайно. Если выбрать какую-нибудь молекулу, то за доста­точно долгое время Т она получит определенное число N ударов. Если увеличить промежуток времени вдвое, то и число ударов возрастет вдвое. Таким образом, число столкно­вений пропорционально времени Т. Это можно выразить сле­дующим образом:

N=T/t (43.1)

Мы записали постоянную пропорциональности в виде 1/t, где t имеет размерность времени. Постоянная t — это среднее время между столкновениями. Предположим для примера, что за час происходит 60 столкновений; тогда t равно одной минуте. Мы будем говорить, что t (одна минута) это среднее время между столкновениями.

Часто нам придется искать ответ на такой вопрос: Какова вероятность того, что молекула испытает столкновение в те­чение малого промежутка времени dt? Мы догадываемся, что эта вероятность равна dt/t. Попытаемся, однако, привести более убедительные аргументы. Предположим, что в нашем распоряжении имеется очень большое число N молекул. Сколько молекул из этого числа столкнется в течение интервала вре­мени dt? Если молекулы находятся в равновесном состоянии, то ничего не будет меняться в среднем со временем. Таким образом, N молекул, пробывших в ящике в течение интервала dt, испытают столько же соударений, сколько одна моле­кула за время Ndt. Число соударений одной молекулы за большое время Ndt известно — это Ndt/t. А если число соударений между N молекулами за время dt равно Ndtlt, то вероятность удара для одной молекулы равна 1/N части этой величины, или (1/N)(Ndt/t)=dt/t (как мы и говорили с самого начала). Таким образом, относительное число молекул, сталкивающихся за время dt, грубо говоря, равно dt/t. Если, например, t равно одной минуте, то за секунду столкнется 1/60 часть всех молекул.

Это означает, конечно, что если в данный момент 1/60 часть молекул подошла достаточно близко к тем, с кем они должны столкнуться, то их столкновение произойдет в течение сле­дующей минуты.

Когда мы говорим, что t (среднее время между столкнове­ниями) равно одной минуте, то мы вовсе не считаем, что все столкновения разделены в точности минутными интервалами. Частица, столкнувшись, совсем не выжидает потом еще минуту, чтобы нанести следующий удар. Промежутки между последо­вательными столкновениями весьма различны. В дальнейшем, правда, нам это не понадобится, но можно задать такой во­прос: А чему все же равно время между столкновениями? Мы уже знаем, что в приведенном выше примере среднее время равно одной минуте, но нам, быть может, нужно знать, какова вероятность того, что молекула не столкнется ни с кем в течение двух минут?

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука