Читаем Feynmann 4 полностью

В этой главе мы не будем уточнять, какого рода среднее мы имеем в виду в каждом случае. Существующие разные средние — среднее, корень из среднего квадрата и т. д.— приблизительно равны и отличаются только множителями, близкими к единице. Поскольку для получения правильных множителей необходим подробный анализ, нам нет смысла очень уж стараться уточнять, какое именно среднее исполь­зуется в том или ином случае. Мы хотим еще предупредить читателей, что используемые для обозначения физических величин алгебраические символы (например, l для длины сво­бодного пробега) не являются общепринятыми просто потому, что об этом никто еще специально не договаривался.

Вероятность того, что молекула испытает столкновение, пройдя расстояние dx, равна dx/l, как вероятность столкно­вения за короткий промежуток времени dt равна dt/t. Призвав на помощь те же аргументы, что и раньше, читатель сможет показать, что вероятность того, что молекула пройдет по крайней мере расстояние х, прежде чем испытает следующее столк­новение, равна е-х/l.

Среднее расстояние, которое молекула проходит между столкновениями (длина свободного пробега l), зависит от коли­чества молекул, ее окружающих, и от того, какого «размера» эти молекулы, т. е. от того, насколько уязвимую мишень пред­ставляют они собой. «Размеры» мишени при столкновениях обычно описывают при помощи «эффективного сечения столк­новений»; эта же идея используется и в ядерной физике или в задачах о рассеянии света.

Рассмотрим движущуюся частицу, которая проходит рас­стояние dx внутри газа, содержащего n0 рассеивателей (молекул) в единичном объеме (фиг. 43.1).

Фиг. 43,1. Эффективное сечение столкновения.

На каждой площадке единичной площади, перпендикулярной к направлению движения вы­бранной нами частицы, имеется n0dx молекул. Если каждая может быть представлена эффективной площадью столкновения, или, как обычно говорят, «эффективным сечением столкно­вения» sс, то полная площадь, покрываемая рассеивателями, равна scn0dx.

Под «эффективным сечением столкновения» понимается площадь, в которую должен попасть центр частицы, если она должна столкнуться с заданной молекулой. Если моле­кулы выглядят как маленькие шарики (классическая кар­тина), то следует ожидать, что sс=p(r1+r2)2, где r1 и r2радиусы двух сталкивающихся молекул. Вероятность того, что наша частица столкнется с какой-нибудь молекулой, равна отношению площади, покрываемой рассеивающими молеку­лами, к полной площади, принятой нами за единицу. Та­ким образом, вероятность столкновения на пути dx равна sсn0dx:

Вероятность столкновения на пути dx =sn0 dx. (43.10)

Мы уже отметили раньше, что вероятность столкновения на пути dx может быть записана в терминах длины свобод­ного пробега l как dx/l. Сравнивая это с (43.10), можно связать длину свободного пробега с эффективным сечением столкновения:

1/l= scn0. (43.11)

Это равенство легче запомнить, если записать его так:

sсn0l = 1. (43.12)

Эта формула говорит, что если частица проходит путь I внутрь рассеивателя, в котором молекулы могут как раз покрыть всю площадь, то в среднем происходит одно столк­новение. В цилиндре высотой l, поставленном на основание единичной площади, содержится n0l рассеивателей; если каж­дый из них занимает площадь sс, то полная площадь, покрытая ими, равна n0lsc, а это как раз единичая площадь. Конечно, молекулы не покрывают всей площади целиком, потому что часть молекул прячется за соседние молекулы. Поэтому не­которые молекулы пройдут между столкновениями большее, чем l, расстояние. Ведь это только в среднем молекулам между столкновениями дается ровно столько времени, чтобы они смогли пройти расстояние l. Измеряя длину свободного про­бега l, можно определить эффективное сечение рассеяния sc и сравнить этот результат с расчетами, основанными на де­тальной теории строения атомов. Но это уже совсем другая тема! А пока вернемся к проблеме неравновесных состояний.

§ 3. Скорость дрейфа

Мы хотим описать поведение одной или нескольких молекул, которые чем-то отличаются от огромного большинства осталь­ных молекул газа. Будем называть «большинство» молекул молекулами «фона», а отличающиеся от них молекулы получат название «особых» молекул, или (для краткости) S-молекул. Молекула может быть особой по целому ряду причин: она может быть, скажем, тяжелее молекул фона. Может она отли­чаться от них также химическим составом. А, может быть, особые молекулы несут электрический заряд — тогда это будет ион на фоне нейтральных молекул. Из-за необычности масс или зарядов на S-молекулы действуют силы, отличающиеся от сил между молекулами фона. Изучая поведение S-молекул, можно понять основные эффекты, которые вступают в игру во многих разнообразных явлениях. Перечислим некоторые из них: диффузия газов, электрический ток в батарее, осаждение, разделение при помощи центрифуги и т. д.

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука