Читаем Числа: от арифметики до высшей математики полностью

Мы можем сразу определить, что среди целых чисел такого числа нет, ведь 1 × 1 = 1, а 2 × 2 = 4. Первое число слишком мало, а второе слишком велико. Следовательно, ответ будет дробным числом.

А может ли вообще существовать квадратный корень в виде дробного числа? Почему же нет? Согласно нашему определению экспоненциальных выражений (12/5)2 — это 12/5 × 12/5, и ответом является число 124/25. А это, в свою очередь, означает, что √124/25 равен 12/5. Теперь мы убедились, что не только квадратный корень может быть дробным числом, но и квадрат числа также может быть дробным числом. И в обоих случаях справедливы те же правила, что и в случае целых чисел.

Кроме того, случайно оказалось, что число 124/25, будучи умноженным на себя самое, дает результат, близкий к 2. Отсюда следует, что 12/5 близко к √2. Только 1/25 отделяет нас от искомого ответа, так как (12/5)2 — это 124/25, а нам нужно получить число 125/25, то есть 2.

Но можно получить и более точный ответ. Если помножить дробное число 141/100 на себя самое, мы получим 19881/10000, что гораздо ближе к 2. Может показаться, что, если делать более точные вычисления, мы рано или поздно найдем точное значение дробного числа, которое является корнем квадратным из 2, хотя, возможно, это будет очень сложное число.

Но так ли это, вот в чем вопрос.

Сравниваем линии

Впервые поиском корня квадратного из 2 занялись еще математики Древней Греции. Как я вам уже говорил, они в первую очередь были геометрами, их интересовали соотношения длин отрезков геометрических фигур. Например, если провести диагональ в прямоугольнике, как показано на рисунке, то в каком соотношении будут находиться длина диагонали и длины сторон прямоугольника? Очевидно, что диагональ длиннее, но насколько? Древние греки хотели найти ответ на этот вопрос.

Предположим, мы сравниваем два отрезка. Длина одного из них 2 см, а длина другого — 1 см. Следовательно, мы можем сказать, что длины отрезков соотносятся как 2 к 1, или один отрезок в два раза длиннее другого. Длина одного из отрезков 4 см, а длина другого — 2 см, то можно сказать, что длины отрезков соотносятся как 4 к 2.

В обоих случаях длина одного из отрезков вдвое больше длины другого отрезка. С точки зрения математика, соотношение величин представляет гораздо больший интерес, чем их абсолютные значения. Не так важно, что в одном случае длины равны 4 и 2 см, а в другом 48 и 24 см. Математик в обоих случаях обратит внимание на то, что длина одного отрезка вдвое больше длины другого, то есть соотносятся как 2 к 1.

 Прямоугольник с диагональю

Самое удобное — представить соотношение величин в виде дроби. Если длина одного отрезка равна 2 см, а длина другого — 1 см, значит, их соотношение равно 2/1. Если длина одного отрезка равна 48 см, а длина другого 24 см, значит, их соотношение равно 48/24 или 2/1, если мы разделим обе части на 24.

Дробь, представляющая собой отношение двух однотипных величин, называется соотношением. (Этими величинами могут быть и длины отрезков, и объемы сосудов, и веса двух человек и так далее.)

Разумеется, соотношение может не быть таким простым, как 2 : 1. Предположим, длина одного отрезка равна одному сантиметру, а длина другого — 19/10 сантиметра.

Тогда соотношение равно 19/10/1. Это выражение можно упростить, умножив верхнюю и нижнюю части на 10. Тогда получим, что соотношение равно 19/10.

Соотношение любых двух чисел, выраженных дробными числами, может быть представлено как отношение двух целых чисел. Например, у нас есть два отрезка, длина одного из них — 24/17 сантиметра, а длина другого — 113/15 сантиметра. Соотношение этих двух отрезков можно представить в виде дроби — 24/17/113/15. Если мы умножим числитель и знаменатель этой пугающе сложной дроби на 127½, то получим то же соотношение в виде целых чисел, то есть 285/238.

(Гораздо проще было бы воспользоваться десятичными дробями, но в Древней Греции они не были известны. А если мы последуем по тому же пути, по которому древние математики познавали мир, наше путешествие будет значительно интереснее.)

Теперь можно вернуться к нашему прямоугольнику. Нас интересует соотношение длин сторон прямоугольника и длин диагонали, то есть мы решаем ту же задачу, что и греческие математики в древности. Поскольку прямоугольник разделяется диагональю на две абсолютно симметричные части, мы можем упростить задачу и отбросить одну половину фигуры, предположим, левую. У нас остался так называемый прямоугольный треугольник.

Прямоугольный треугольник с гипотенузой

Еще за много столетий до наших дней египтяне на основе практического опыта установили, что если одна сторона прямоугольного треугольника равна 3 единицам, а другая — 4 единицам, то длина гипотенузы составит 5 единиц. В этом случае соотношение гипотенузы и одной из сторон равно 5/4 для более длинной стороны и 5/3 для более короткой.

Перейти на страницу:

Все книги серии Популярная наука

Удивительная Солнечная система
Удивительная Солнечная система

Солнечная система – наш галактический дом. Она останется им до тех пор, пока человечество не выйдет к звездам. Но знаем ли мы свой дом? Его размеры, адрес, происхождение, перспективы на будущее и «где что лежит»?Похоже, что мы знаем наш дом недостаточно. Иначе не будоражили бы умы открытия, сделанные в последние годы, открытия подчас удивительные и притом намекающие на то, какую прорву новых знаний мы должны обрести в дальнейшем. Уже в наше время каждая новая книга о Солнечной системе устаревает спустя считаные годы. Очень уж много информации приносят телескопы и межпланетные аппараты. Сплошь и рядом астрономические исследования и даже эксперименты кардинально меняют старые представления о том закоулке Галактики, где мы имеем удовольствие жить.Цель этой книги – дать читателю современное представление о Солнечной системе как части Галактики.

Александр Николаевич Громов

Научная литература / Прочая научная литература / Образование и наука

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное