Читаем Числа: от арифметики до высшей математики полностью

В качестве следующего примера возьмем дробь 1/7. Представим ее в виде 1,00000000/7 и проведем деление. (Эту операцию я полностью доверяю читателю.) Получаем следующий десятичный эквивалент:

1/7 = 0,142857142857142857142857… и так далее. Обращаю ваше внимание на то, что десятичным эквивалентом 1/7 является бесконечная периодическая десятичная дробь. Десятичный эквивалент является бесконечной дробью как в случае 1/3, так и в случае 1/7, но в случае 1/3 мы имеем бесконечное повторение цифры 3, а в случае 1/7 — бесконечное повторение последовательности цифр 142857.

Это примеры периодических десятичных дробей.

По существу, все десятичные дроби можно рассматривать как бесконечные периодические, поскольку в конце любой конечной десятичной дроби можно поставить бесконечное количество нулей и ее значение при этом не изменится. Например, десятичный эквивалент ½ равен 0,5.

Но это число можно представить в виде 0,5000000000000 с бесконечно повторяющимся нулем.

Иногда бесконечно повторяющуюся цифру в периодической десятичной дроби обозначают точкой, поставленной сверху. Так, 1/3 можно обозначить как , а у как . Если периодически повторяется группа чисел, ее заключают в скобки и точку ставят над одной из цифр этой группы. Так,

1/7 = 0,(142857).

Действительно, любую дробь можно представить в виде бесконечного десятичного эквивалента (даже если этой бесконечно повторяющейся цифрой будет 0), и, наоборот, любая бесконечная периодическая дробь может быть представлена в виде конечной недесятичной дроби, то есть в виде соотношения целых чисел.

У вас, конечно, возник вопрос: а как оперировать с бесконечными периодическими десятичными дробями при арифметических действиях. Можно, например, использовать недесятичный эквивалент, скажем, вместо 0,333333… использовать 1/3. Но при решении сложных научных и инженерных задач, как ни странно, бесконечные периодические десятичные дроби не создают никаких затруднений. Однако существуют другие сложные в обращении, но необходимые при решении серьезных проблем числа, и о них я вам расскажу в следующих главах.

<p>Глава 6</p><p>ФОРМА ЧИСЕЛ</p>Еще немного греческих развлечений

Греческие математики занимались в основном геометрией и много времени проводили подсчитывая количество точек, расположенных на плоскости в форме различных геометрических фигур. Количество точек, которые составляют треугольник, называют треугольными числами.

Треугольные и квадратные числа

Можно представить себе сверхмикроскопический треугольник, состоящий из одной точки. Три точки также образуют треугольник, у которого по две точки на каждой стороне. Шесть точек образуют уже больший треугольник, у которого по три точки на каждой стороне, а десять точек — треугольник, у которого по четыре точки на каждой стороне.

Можно записать треугольные числа в ряд: 1, 3, 6, 10, 15, 21, 28, 36, 45, 55 и так далее. Каждое следующее треугольное число образует треугольник, у которого на каждой стороне на одну точку больше. Ряд треугольных чисел можно продолжать бесконечно.

Обратите внимание, ряд треугольных чисел образует определенную зависимость. Первое число равно 1, следующее равно 3, то есть 1+2, затем идет 6, то есть 1 + 2 + 3, затем 10, то есть 1 + 2 + 3 + 4, затем 15, то есть 1 + 2 + 3 + 4 + 5, и так далее. Запомнив эту зависимость, вы сможете продолжать ряд треугольных чисел сколь угодно долго, не составляя треугольников и не пересчитывая точки. Определить, является ли данное число треугольным или нет, можно, представив его в виде ряда, подобного приведенному выше. Если число можно представить в виде суммы чисел, где каждое следующее число на единицу больше предыдущего, а первое число является единицей, то это число — треугольное.

Любая группа чисел, которая может быть представлена в виде последовательности, подчиняющейся какому-то правилу, образует ряд.

Числа, являющиеся количеством точек, из которых можно составить квадрат, тоже можно представить в виде ряда. Как и в прошлый раз, одну точку можно рассматривать как сверхмикроскопический четырехугольник. Четыре точки также образуют четырехугольник, у которого по две точки на каждой стороне. Девять точек образуют уже больший четырехугольник, у которого по три точки на каждой стороне, а шестнадцать точек — четырехугольник, у которого по четыре точки на каждой стороне.

Можно записать четырехугольные числа в ряд: 1, 9, 16, 25, 36, 49 и так далее. Каждое следующее четырехугольное число образует четырехугольник, у которого на каждой стороне на одну точку больше. Ряд четырехугольных чисел можно продолжать бесконечно.

Проанализировав числа, составляющие ряд четырехугольных чисел, мы увидим, что они тоже подчиняются определенной зависимости. Начнем с 1. Здесь нет вариантов, единица — это просто единица. Но уже 4 = 1 + 3, далее 9 = 1 + 3 + 5, 16=1+3 + 5 + 7 и так далее.

Таким образом, каждое число является суммой последовательных нечетных чисел, первое из которых единица.

Соотношение между числами треугольного и квадратного рядов показано на диаграмме.

Соотношения в рядах треугольных и квадратных чисел

Перейти на страницу:

Все книги серии Популярная наука

Удивительная Солнечная система
Удивительная Солнечная система

Солнечная система – наш галактический дом. Она останется им до тех пор, пока человечество не выйдет к звездам. Но знаем ли мы свой дом? Его размеры, адрес, происхождение, перспективы на будущее и «где что лежит»?Похоже, что мы знаем наш дом недостаточно. Иначе не будоражили бы умы открытия, сделанные в последние годы, открытия подчас удивительные и притом намекающие на то, какую прорву новых знаний мы должны обрести в дальнейшем. Уже в наше время каждая новая книга о Солнечной системе устаревает спустя считаные годы. Очень уж много информации приносят телескопы и межпланетные аппараты. Сплошь и рядом астрономические исследования и даже эксперименты кардинально меняют старые представления о том закоулке Галактики, где мы имеем удовольствие жить.Цель этой книги – дать читателю современное представление о Солнечной системе как части Галактики.

Александр Николаевич Громов

Научная литература / Прочая научная литература / Образование и наука

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное