Читаем Занимательная микроэлектроника полностью

Заметки на полях

Формулу закона Джоуля-Ленца очень просто вывести из определений тока и напряжения (см. главу 1). Действительно, размерность напряжения есть джоуль/кулон, а размерность тока — кулон/секунда. Если их перемножить, то кулоны сокращаются и получаются джоули в секунду, что, согласно данному ранее определению, и есть мощность. Обратите также внимание на одно важное следствие из этих формул: мощность в цепи пропорциональна квадрату тока и напряжения. Это означает, что если повысить напряжение на некоем резисторе вдвое, то мощность, выделяющаяся на нем, возрастет вчетверо. Отметьте также, что от величины сопротивления мощность зависит линейно: если вы при том же источнике питания уменьшите сопротивление вдвое, то мощность в нагрузке возрастет также вдвое. Это именно так, хотя факт, что, согласно закону Ома, ток в цепи увеличится также вдвое, мог бы нас привести к ошибочному выводу, будто в этом случае выделяющаяся мощность возрастет вчетверо — если вы внимательно проанализируете формулировки закона Джоуля-Ленца, то поймете, где здесь «зарыта собака».

В электрических цепях энергия выступает чаще всего в виде теплоты, поэтому электрическая мощность в подавляющем большинстве случаев физически означает просто количество тепла, которое выделяется в цепи (если в ней нет электромоторов или, скажем, источников света). Вот и ответ на вопрос, который мог бы задать пытливый читатель еще при чтении первой главы: куда расходуется энергия источника питания, «гоняющего» по цепи ток? Ответ: на нагрев сопротивлений нагрузки, включенных в цепь. И даже если нагрузка представляет собой, скажем, источник света (лампочку или светодиод), то большая часть энергии все равно уходит в тепло: КПД лампы накаливания (т. е. та часть энергии, которая превращается в свет), как известно, не превышает нескольких процентов. У светодиодов эта величина значительно выше, но и там огромная часть энергии уходит в тепло. Кстати, из этого следует, например, что ваш компьютер последней модели, который потребляет далеко за сотню ватт, также всю эту энергию переводит в тепло — за исключением исчезающе малой ее части, которая расходуется на свечение экрана и вращение жесткого диска. Такова цена информации!

Если мощность, выделяемая в нагрузке, превысит некоторую допустимую величину, то нагрузка просто сгорит. Поэтому различные типы нагрузок характеризуют предельно допустимой мощностью, которую они могут рассеять без необратимых последствий. А сейчас зададимся вопросом: что означает мощность в цепях переменного тока?

Что показывает вольтметр в цепи переменного тока

Для того чтобы понять смысл этого вопроса, давайте внимательно рассмотрим график синусоидального напряжения на рис. 2.2. В каждый момент времени величина напряжения различна, соответственно будет разной и величина тока через резистор нагрузки, на который мы подадим такое напряжение. В моменты времени, обозначенные Т/2 и Т (т. е. кратные половине периода нашего колебания), напряжение на нагрузке вообще будет равно нулю (ток через резистор не течет), а в промежутках между ними — меняется вплоть до некоей максимальной величины, равной амплитудному значению А. Точно так же будет меняться ток через нагрузку, а следовательно, и выделяемая мощность. Но процесс выделения тепла крайне инерционен — даже такой маленький предмет, как волосок лампочки накаливания, за 1/100 секунды, которые проходят между пиками напряжения в промышленной сети частотой 50 Гц, не успевает заметно остыть. Поэтому нас чаще всего интересует именно средняя мощность за большой промежуток времени. Чему она будет равна?

Перейти на страницу:

Похожие книги

Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки
Электроника для начинающих
Электроника для начинающих

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию для защиты от проникновения в дом, елочные огни, электронные украшения для одежды, устройство преобразования звука, кодовый замок, автономную роботизированную тележку и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий.Для начинающих радиолюбителей

Паоло Аливерти , Чарльз Платт

Радиоэлектроника / Технические науки
Искусство схемотехники. Том 3 (Изд.4-е)
Искусство схемотехники. Том 3 (Изд.4-е)

Широко известная читателю по предыдущим изданиям монография известных американских специалистов посвящена быстро развивающимся областям электроники. В ней приведены наиболее интересные технические решения, а также анализируются ошибки разработчиков аппаратуры: внимание читателя сосредотачивается на тонких аспектах проектирования и применения электронных схем. На русском языке издается в трех томах. Том 3 содержит сведения о микропроцессорах, радиотехнических схемах, методах измерения и обработки сигналов, принципах конструирования аппаратуры и проектирования маломощных устройств, а также обширные приложения. Для специалистов в области электроники, автоматики, вычислительной техники, а также студентов соответствующих специальностей вузов и техникумов.

Пауль Хоровиц , Уинфилд Хилл

Техника / Радиоэлектроника