Для прямоугольных напряжений, представляющих собой меандр[1], подобный рис. 2.5,
Рис. 2.6.
Все конденсаторы ведут свою родословную от лейденской банки, названной так по имени голландского города Лейдена, в котором трудился ученый середины XVIII века Питер ван Мушенбрук. Банка эта представляла собой большой стеклянный стакан, обклеенный изнутри и снаружи станиолем (тонкой оловянной фольгой, использовавшейся тогда для тех же целей, что и современная алюминиевая— металл алюминий еще не был известен). Так как банку заряжали от электростатической машины (другого источника электричества еще не придумали), которая запросто может выдавать напряжения в несколько сотен тысяч вольт, действие ее было весьма впечатляющим — в учебниках физики любят приводить случай, когда Мушенбрук продемонстрировал эффект от разряда своей банки через цепь гвардейцев, держащихся за руки. Ну не знали тогда, что электричество может и убить — гвардейцам сильно повезло, что емкость этого примитивного конденсатора была весьма невелика и запасенной энергии хватало только на то, чтобы люди почувствовали чувствительный удар током!
Схематичное изображение простейшего конденсатора показано на рис. 2.7. Из формулы, приведенной на рисунке (она носит специальное название «формула плоского конденсатора», потому что для конденсаторов иной геометрии соответствующее выражение будет другим), следует, что емкость тем больше, чем больше площадь пластин и чем меньше расстояние между ними.
Рис. 2.7.
С — емкость,
Что же такое емкость? Согласно определению,
Смысл понятия емкости раскрывается так: если напряжение от источника напряжения составляет 1 В, то емкость в одну нанофараду, как у лейденской банки, может запасти 10-9 кулон электричества. Если напряжение составит 105 вольт (типичная величина при заряде от электростатической машины, как в опытах Мушенбрука), то и запасенный на данной емкости заряд увеличится в той же степени — до 10-4 кулон. Любой конденсатор фиксированной емкости сохраняет это соотношение: заряд на нем тем больше, чем больше напряжение, а коэффициент пропорциональности в этой зависимости определяется номинальной емкостью.