Заметки на полях
Впрочем, и такое определение не будет строгим, — очевидное исключение представляют собой электрические колебания в устройствах для записи и воспроизведения звука, т. к. ни строгой периодичности, ни повторяемости вы там не найдете, если не рассматривать, конечно, звук одиночной струны или камертона. И тем не менее преобразованные в электричество звуковые колебания — типичный пример переменного тока. На чем и успокоимся, поскольку это далеко не единственный случай, когда очевидным вещам невозможно дать строгого определения, скорее наоборот— надо еще сильно поискать в природе нечто такое, что можно было бы однозначно определить, не впадая в очевидные противоречия с реальностью. Специалист как раз и отличается от неспециалиста тем, что всегда понимает, о чем речь.
Как вы хорошо знаете из школьного курса физики, наиболее простым и наглядным примером переменной величины является величина, изменяющаяся во времени по синусоидальному закону. На рис. 2.2 приведен график подобной величины, построенный в условном масштабе. По оси ординат могут быть отложены как напряжение или ток, так и любой другой физический параметр. Отрезок времени
Рис. 2.2.
Величина, обратная периоду, носит название частоты и обозначается буквой
В дальнейшем под периодической величиной мы будем подразумевать напряжение (для тока все выглядит аналогично). Математический закон, описывающий поведение синусоидального напряжения (
U =
Здесь
А что будет, если график немного подвигать вдоль оси абсцисс? Как видно из рис. 2.3 (кривая 2), это равносильно признанию того факта, что в нулевой момент времени наше колебание не равно нулю.
Рис. 2.3.
1 — исходное колебание; 2 — сдвинутое на четверть периода
На рис. 2.3 оно начинается с максимального значения амплитуды. При этом сдвигаются моменты времени, соответствующие целому и половине периода, а в уравнении появится еще одна величина, обозначаемая буквой
U =