Читаем Занимательная микроэлектроника полностью

Величина φ носит название фазы. Взятое для одного отдельного колебания, значение фазы не имеет особого смысла, т. к. мы всегда можем сместить точку начала отсчета времени так, чтобы привести уравнение к виду (2.1), а, соответственно, график — к виду рис. 2.2, и при этом ничего не изменится. Все будет иначе, если мы имеем два связанных между собой колебания, скажем, напряжения в разных точках одной схемы. В этом случае нам может быть важно, как соотносятся их величины в каждый момент времени, и тогда фаза одного переменного напряжения относительно другого (называемая в этом случае сдвигом или разностью фаз) и будет характеризовать такое соотношение. Для двух колебаний, представленных на рис. 2.3, сдвиг фаз равен 90° (π/2 радиан). Для наблюдения таких колебаний требуется многоканальный или многолучевой осциллограф — в обычном фаза колебания определяется только настройками синхронизации, и, рассматривая их по отдельности, разницы вы не увидите.

Интересно, что получится, если мы суммируем такие «сдвинутые» колебания? Не надо думать, что это есть лишь теоретическое упражнение — суммировать электрические колебания разного вида приходится довольно часто. Математически это будет выглядеть, как сложение формул (2.1) и (2.2):

U = A1∙sin (2π∙f1t) + A2∙sin (2π∙f2t + φ). (2.3)

Обратите внимание, что в общем случае амплитуды и частоты колебаний различны (на рис. 2.3 они одинаковы!).

Чтобы представить себе наглядно результат, надо проделать следующее: скопировать графики на миллиметровку, разделить период колебаний на несколько отрезков и для каждого из них сложить величины колебаний (естественно, с учетом знака), а затем по полученным значениям провести график. Так делали все— от школьников до ученых-математиков— еще лет двадцать назад. Теперь, конечно, удобнее проделать то же самое на компьютере: либо загрузить значения функций в Excel, либо (что, на мой взгляд, гораздо проще) написать программу, которая вычисляет значения по формуле (2.3) и строит соответствующие графики. Если сложить два колебания, которые были представлены на рис. 2.3, то получится результат, показанный на рис. 2.4. Обратим внимание на тот факт, что период результирующего колебания в точности равен периодам исходных, если они одинаковы, а вот амплитуда и фаза будут отличаться.

Результаты таких упражнений могут быть весьма неожиданными и вовсе неочевидными: скажем, при сложении двух синусоидальных колебаний с одинаковой частотой и амплитудой, как на рис. 2.3–2.4, но со сдвигом фаз в 180° (когда колебания находятся в противофазе), их сумма будет равна нулю на всем протяжении оси времени! А если амплитуды таких колебаний не равны друг другу, то в результате получится такое же колебание, амплитуда которого равна разности амплитуд исходных.

Рис. 2.4.Суммирование колебаний:

1 — исходные колебания; 2 — их сумма

Этот факт иногда используется для того, чтобы получить нестандартные напряжения с трансформатора с несколькими обмотками — если их обмотки подключить последовательно (начало одной к концу другой, см. главу 4), то напряжения суммируются, а если их включить встречно (начало одной к началу другой), то напряжения вычтутся, причем при строго одинаковых обмотках напряжение на выходе будет равно нулю!

Если у вас есть какой-нибудь низковольтный трансформатор под рукой, то можете поэкспериментировать с соединением вторичных обмоток, учитывая при этом, что начала обмоток будут иметь нечетные номера, а концы — четные. Только не ошибитесь, и не замкните что-нибудь с сетевой (первичной) обмоткой — это опасно и для вас, и для трансформатора, и для предохранителей в квартире. Так что если трансформатор вам незнаком, то необходимо сначала добыть его описание и определить, где у него сетевая обмотка.

Значения напряжения, естественно, можно измерять любым мультиметром, но вот вопрос на засыпку: что именно будет показывать вольтметр переменного тока? Ведь измеряемая величина все время, с частотой 50 раз в секунду, меняется от минимального отрицательного до максимального положительного значения, т. е. в среднем равна нулю. Тем не менее вольтметр нам покажет совершенно определенное значение. Для ответа на вопрос, какое именно, отвлечемся от колебаний и поговорим об еще одной важнейшей Величине, которая характеризует электрический ток: о мощности.

Мощность

Согласно определению, мощность есть энергия (работа), выделяемая в единицу времени. Единица мощности называется ваттом (Вт). По определению, 1 ватт есть такая мощность, при которой за 1 секунду выделяется (или затрачивается — смотря с какой стороны поглядеть) 1 джоуль энергии. Для электрической цепи ее очень просто подсчитать по закону Джоуля-Ленца: Р (ватт) = U (вольт) ∙ I (ампер). Если подставить в формулу мощности выражения связи между током и напряжением по закону Ома, то можно вывести еще два часто употребляющихся представления закона Джоуля-Ленца: P = I2R и P = U2/R.

Перейти на страницу:

Похожие книги

Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки
Электроника для начинающих
Электроника для начинающих

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию для защиты от проникновения в дом, елочные огни, электронные украшения для одежды, устройство преобразования звука, кодовый замок, автономную роботизированную тележку и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий.Для начинающих радиолюбителей

Паоло Аливерти , Чарльз Платт

Радиоэлектроника / Технические науки
Искусство схемотехники. Том 3 (Изд.4-е)
Искусство схемотехники. Том 3 (Изд.4-е)

Широко известная читателю по предыдущим изданиям монография известных американских специалистов посвящена быстро развивающимся областям электроники. В ней приведены наиболее интересные технические решения, а также анализируются ошибки разработчиков аппаратуры: внимание читателя сосредотачивается на тонких аспектах проектирования и применения электронных схем. На русском языке издается в трех томах. Том 3 содержит сведения о микропроцессорах, радиотехнических схемах, методах измерения и обработки сигналов, принципах конструирования аппаратуры и проектирования маломощных устройств, а также обширные приложения. Для специалистов в области электроники, автоматики, вычислительной техники, а также студентов соответствующих специальностей вузов и техникумов.

Пауль Хоровиц , Уинфилд Хилл

Техника / Радиоэлектроника