— если номиналы резисторов равны, то суммарное сопротивление будет вдвое меньше каждого номинала;
— если номиналы резисторов различаются во много раз, то общее сопротивление примерно равно меньшему номиналу. Это также можно иллюстрировать на примере рис. 1.3, где мы игнорируем наличие вольтметра, включенного параллельно R2, т. к. его сопротивление намного больше сопротивления резистора.
Знание этих правил поможет вам быстро оценивать схему, не занимаясь алгебраическими упражнениями и не прибегая к помощи калькулятора. Даже если соотношение сопротивлений не попадает под перечисленные случаи, результат все равно можно оценить «на глаз» с достаточной точностью. При параллельном соединении, которое представляет большую сложность при расчетах, для такой оценки нужно прикинуть, какую долю меньшее сопротивление составляет от их арифметической суммы — именно во столько раз приблизительно снизится их общее сопротивление по отношению к меньшему.
Проверить это легко: рассмотрим ситуацию, когда сопротивления равны. В этом случае одно сопротивление составляет 1/2 часть их суммы, т. е. общее сопротивление должно снизиться вдвое, как и есть на самом деле. Возьмем более сложный случай: одно сопротивление пусть имеет номинал 3,3 кОм, второе — 6,8 кОм. В соответствии с изложенным мы будем ожидать, что общее сопротивление должно быть на 30 % меньше, чем 3,3 кОм, т. е. 2,2 кОм (3,3 составляет примерно одну треть от суммы 3,3+6,8, т. е. общее сопротивление должно быть меньше, чем 3,3, на треть от этого значения, равную 1,1 — в результате и получаем 2,2 кОм). Если мы проверим результат, полученный такой прикидкой в уме, точным расчетом, то мы получим в результате 2,22 кОм, что очень неплохо.
В большинстве случаев нам такой точности и не потребуется — помните, что и сами сопротивления имеют разброс по номиналу, и для обычных схем допуски на номиналы стандартных компонентов могут быть довольно значительными (по крайней мере, в правильно составленных схемах). Если же схема в некоторых случаях должна все же иметь какие-то строго определенные параметры, то с помощью стандартных компонентов вы все равно этого не добьетесь, т. к. параметры, образно выражаясь, будут «гулять» (в пределах допусков, естественно) от дуновения ветерка из форточки. В таких случаях надо применять прецизионные резисторы и конденсаторы, а во времязадающих цепях использовать кварцевые резонаторы. Но составлять схему так, чтобы она теряла работоспособность от замены резистора 1 кОм на 1,1 кОм— не наш метод!
Теперь понятно для чего служат эквивалентные схемы: вы просто включаете внутренние сопротивления в вашу цепь и учитываете их при расчетах, как будто они там специально поставлены. Отметим, что с помощью эквивалентных схем можно представить в принципе любой радиоэлектронный компонент — иногда это очень удобно.
Теперь нам несложно понять, какое поведение ожидается от амперметра и вольтметра. Амперметр всегда включается в измеряемую цепь последовательно, ведь через него должен проходить тот же ток, что и во всей цепи. Но если он будет иметь большое собственное сопротивление, то внесет существенную погрешность, тогда на нем будет падать заметная часть напряжения, это уменьшит падение напряжения на остальных резисторах и суммарный ток.
По сути реальный амперметр является, как это не парадоксально, вольтметром — он измеряет падение напряжения на его собственном внутреннем сопротивлении, меняя значение которого (устанавливая т. н.