Наоборот, идеальный источник тока, как нетрудно догадаться, обязан обладать бесконечным внутренним сопротивлением — только тогда ток в цепи совсем не будет зависеть от нагрузки. Понять, как источник реального тока (не бесконечно малого) может обладать бесконечным выходным сопротивлением, довольно трудно, и в быту таких источников вы не встретите. Однако уже обычный резистор, включенный последовательно с источником напряжения (не тока!), как R1 на рис. 1.3, при условии, что сопротивление нагрузки мало (R2 << R1), может служить хорошей моделью источника тока. Еще ближе к идеалу транзисторы в определенном включении, и мы с этим разберемся позднее.
Источники напряжения и тока обозначаются на схемах так, как показано на рис. 1.4, а и б. Не перепутайте, логики в этих обозначениях немного, но так уж принято. А эквивалентные схемы (их еще называют схемами замещения) реальных источников приведены на рис. 1.4, в и г, где RB обозначает внутреннее сопротивление источника. Как можно использовать эти эквивалентные схемы при анализе реальных цепей? Для этого нужно окончательно разобраться, как рассчитываются схемы с параллельным и последовательным включением резисторов.
Рис. 1.4.Источники тока и напряжения:
а — обозначение идеального источника напряжения; б — обозначение идеального источника тока; в — эквивалентная схема реального источника напряжения; г — эквивалентная схема реального источника тока
Параллельное и последовательное соединение резисторов и расчет схемСхемы постоянного тока любой степени сложности всегда можно представить как совокупность резисторов и идеальных источников напряжения и тока. Для их расчета достаточно знать два очень простых закона, названных по имени физика XIX столетия Густава Роберта Кирхгофа (1824–1887).
Первый закон Кирхгофа формулируется так: алгебраическая сумма токов в любом узле электрической цепи равна нулю. Или еще проще: сумма токов, направленных к данному узлу, равна сумме токов, направленных от него.
По сути он представляет одну из форм физических законов сохранения — ведь заряды не могут возникнуть из ничего, соответственно, сколько прибыло зарядов в некую точку, столько из нее обязано уйти.
Второй закон Кирхгофа гласит: алгебраическая сумма падений напряжения вдоль любого замкнутого контура электрической цепи равна нулю. Его легко проиллюстрировать на примере нашей схемы рис. 1.3 — там сумма падений напряжений на всех резисторах (включая внутреннее сопротивление батарейки, сопротивление амперметра, которым мы пренебрегали, и т. д.) равна напряжению батарейки. Иначе и быть не может— куда оно, напряжение батарейки, тогда денется?
Из законов Кирхгофа вытекают очень часто применяющиеся на практике правила последовательного и параллельного соединения резисторов: при последовательном соединении складываются сопротивления резисторов, а при параллельном складываются их проводимости, которые по определению, данному ранее, есть величины, обратные сопротивлению (рис. 1.5). Понять, почему правила именно таковы, можно, если рассмотреть течение токов в обоих случаях.
Рис. 1.5.Последовательное и параллельное соединение резисторов
• При последовательном соединении ток I через резисторы один и тот же, поэтому падения напряжения на них складываются (U = U1 + U2), что равносильно сложению сопротивлений.
• При параллельном соединении, наоборот, равны падения напряжений U, а складывать приходится токи (I = I1 + I2), что равносильно сложению проводимостей. Если вы не поняли сказанное, то посидите над рис. 1.5 с карандашом и бумагой и выведите выражения закона Ома для каждого из резисторов — и все станет на свои места.
Из этих определений вытекает также несколько практических правил, которые полезно заучить:
• При последовательном соединении:
— сумма двух резисторов имеет сопротивление всегда больше, чем сопротивление резистора с большим номиналом (правило «больше большего»);
— если номиналы резисторов равны, то суммарное сопротивление окажется вдвое больше каждого номинала;
— если номиналы резисторов различаются во много раз, то общее сопротивление примерно равно большему номиналу. Типичный случай: в примере на рис. 1.3 мы игнорируем сопротивления проводов и амперметра, т. к. они много меньше сопротивлений резисторов.
• При параллельном соединении:
— сумма двух резисторов имеет сопротивление всегда меньше, чем сопротивление резистора с меньшим номиналом (правило «меньше меньшего»);