Читаем Занимательная микроэлектроника полностью

Теперь поставим движок R1 в среднее положение. Ток в цепи теперь пойдет от плюса батареи через амперметр, вывод движка R1, половину резистора R1, резистор R2 и далее, как и раньше, вернется к минусу батареи. Как изменятся показания приборов? Раньше резистор R1 в деле не участвовал, а теперь участвует, хоть и половинкой. Соответственно, общее сопротивление цепи станет уже не 50 Ом (один резистор R2), а 50 (R2) + 50 (половинка R1), т. е. 100 Ом. Амперметр покажет уже не 100 мА, а 5 В/100 Ом = 0,05 А или 50 мА— в два раза меньше. А вот что покажет вольтметр? Так сразу и не скажешь, не правда ли? Придется считать, для этого рассмотрим отдельно участок цепи, состоящий из R2 с присоединенным к нему вольтметром. Очевидно, что току у нас деться некуда — все то количество заряда, которое вышло из плюсового вывода батареи, пройдет через амперметр, через половинку R1, через R2 и вернется обратно в батарею. Значит, и на этом отдельном участке, состоящем из одного R2, ток будет равен тому, что показывает амперметр, т. е. 50 мА. Получается, как будто резистор R2 подключен к источнику тока!

Замечание

На самом деле это не совсем точно — часть тока, хотя и очень небольшая, все же пойдет через вольтметр, минуя R2. Но на практике, особенно для современных вольтметров, этим всегда пренебрегают (см. далее).

И это действительно так — источник напряжения с последовательно включенным резистором (в данном случае это половинка R1) представляет собой источник тока (хотя и плохой). Так каковы же будут показания вольтметра? Очень просто: из закона Ома следует, что UIR где R — сопротивление нужного нам участка цепи, т. е. R2, и в данном случае вольтметр покажет 0,05 50 = 2,5 В. Эта величина называется падением напряжения, в данном случае — падением напряжения на резисторе R2. Легко догадаться, даже не подключая вольтметр, что падение напряжения на резисторе R1 будет равно тоже 2,5 В, причем его можно вычислить двумя путями: как разницу между 5 В от батареи и падением на R2 (2,5 В), или по закону Ома, аналогично расчету для R2.

Замечание

И это не совсем точно — амперметр тоже имеет некоторое сопротивление и может быть представлен в виде еще одного последовательного резистора. Но, как и в случае вольтметра, этим на практике пренебрегают.

А что будет, если вывести движок переменника в крайнее левое положение? Я сразу приведу результат: амперметр покажет 33 мА, а вольтметр — 1,66 В. Пожалуйста, проверьте это самостоятельно! Если вы получите те же значения, то это будет означать, что вы усвоили закон Ома и теперь умеете отличать ток от напряжения.

Источники напряжения и тока

В схеме на рис. 1.3 мы можем выделить, как показано пунктиром, ее часть, включив туда батарейку и переменный резистор R1. Тогда этот резистор (вместе с сопротивлением амперметра, конечно) можно рассматривать, как внутреннее сопротивление источника электрической энергии, каковым выделенная часть схемы станет для нагрузки, роль которой будет играть R2. Любой источник, как легко догадаться, имеет свое внутреннее сопротивление (электронщики часто употребляют выражение «выходное сопротивление») — хотя бы потому, что у него внутри есть провода определенной толщины.

Но на самом деле не провода служат ограничивающим фактором. В главе 2 мы узнаем, что такое мощность в строгом значении этого понятия, а пока, опираясь на интуицию, можно сообразить: чем мощнее источник, тем меньше у него должно быть свое внутреннее сопротивление, иначе все напряжение «сядет» на этом сопротивлении, и на долю нагрузки ничего не достанется. На практике так и происходит. Если вы попытаетесь запустить от набора батареек типа АА какой-нибудь энергоемкий прибор, питающийся от источника с низким напряжением (вроде настольного сканера или ноутбука), то устройство, конечно, не заработает, хотя формально напряжения должно хватать, — напряжение уменьшится почти до нуля. А вот от автомобильного аккумулятора, который гораздо мощнее, все получится, как надо.

Такой источник, у которого внутреннее сопротивление мало по отношению к нагрузке, называют еще идеальным источником напряжения (физики предпочитают название идеальный источник ЭДС, т. е. «электродвижущей силы», на практике, однако, это абстрактное понятие встречается реже, чем менее строгое, но всем понятное «напряжение»). К ним относятся, в первую очередь, все источники питания: от батареек до промышленной сети.

Перейти на страницу:

Похожие книги

Электроника для начинающих (2-е издание)
Электроника для начинающих (2-е издание)

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию, елочные огни, электронные украшения, устройство преобразования звука, кодовый замок и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий. Во втором издании существенно переработан текст книги, в экспериментах используются более доступные электронные компоненты, добавлены новые проекты, в том числе с контроллером Arduino.

Чарльз Платт

Радиоэлектроника / Технические науки
Электроника для начинающих
Электроника для начинающих

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию для защиты от проникновения в дом, елочные огни, электронные украшения для одежды, устройство преобразования звука, кодовый замок, автономную роботизированную тележку и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий.Для начинающих радиолюбителей

Паоло Аливерти , Чарльз Платт

Радиоэлектроника / Технические науки
Искусство схемотехники. Том 3 (Изд.4-е)
Искусство схемотехники. Том 3 (Изд.4-е)

Широко известная читателю по предыдущим изданиям монография известных американских специалистов посвящена быстро развивающимся областям электроники. В ней приведены наиболее интересные технические решения, а также анализируются ошибки разработчиков аппаратуры: внимание читателя сосредотачивается на тонких аспектах проектирования и применения электронных схем. На русском языке издается в трех томах. Том 3 содержит сведения о микропроцессорах, радиотехнических схемах, методах измерения и обработки сигналов, принципах конструирования аппаратуры и проектирования маломощных устройств, а также обширные приложения. Для специалистов в области электроники, автоматики, вычислительной техники, а также студентов соответствующих специальностей вузов и техникумов.

Пауль Хоровиц , Уинфилд Хилл

Техника / Радиоэлектроника