Безусловно, нам до этого пока далеко, но один из первых шагов на этом пути очень поучителен. Сразу после триумфа Watson[85] в телеигре Jeopardy![86] в феврале 2011 года IBM стала энергично переориентировать эту технологию на использование в медицине и других областях и создала на основе Watson новое направление деятельности стоимостью миллиард долларов. В представлении компании система Watson должна была накапливать знания из множества разнообразных источников, включая учебники, медицинские карты, результаты диагностических и генетических тестов, научные статьи, и затем использовать сверхчеловеческую способность к выявлению взаимосвязей, превосходя даже самых одаренных экспертов. IBM надеялась, что это принесет ощутимую пользу в приложениях для разработки персонализированных планов лечения сложных заболеваний, в частности онкологических. Несмотря на невероятный хайп и восторженные публикации в СМИ, расписывающие, как Watson «идет в медицинскую школу» и готовится «взяться за рак»[87], словно это подготовка к очередному выпуску Jeopardy! результаты, по крайней мере на данный момент, оказались неутешительными. В 2017 году Онкологический центр Андерсона при Техасском университете, один из самых разрекламированных партнеров IBM из сферы здравоохранения, прервал работу с Watson, поскольку не получил от этой технологии реальной пользы[88]. Тем не менее IBM продолжает верить в эту идею и вкладывать в нее деньги, как и растущее число других компаний, стартапов и гигантов вроде Google. Конкуренция останется острой, поскольку рентабельность инвестиций, которые позволят создать по-настоящему успешную технологию, обещает быть колоссальной. Я считаю успех неизбежным, но для этого потребуются ИИ-технологии, выходящие за рамки нынешнего применения глубокого обучения, иными словами — прорывы в создании универсального искусственного интеллекта. Мы рассмотрим новейшие достижения в этой сфере в главе 5.
В случае появления подлинно эффективной и надежной системы могут потребоваться медики новой категории. Возможно, это будут бакалавры или магистры со специальной подготовкой в области взаимодействия пациентов с медицинской ИИ-системой, одобренной и должным образом регулируемой. Эти сотрудники с более низкими зарплатами не заменят врачей, а будут работать под их контролем и заниматься типичными случаями. Например, большинство семейных врачей в Соединенных Штатах имеют дело с потоком пациентов с одними и теми же хроническими нарушениями, прежде всего ожирением, высоким кровяным давлением и диабетом. Новая категория практикующих врачей, работающих с искусственным интеллектом, может в значительной мере снять с них нагрузку, а также расширить географический охват. Во многих сельских районах США уже сейчас не хватает врачей, и ситуация будет лишь усугубляться по мере старения населения. Чтобы решить эти проблемы и со временем достичь роста производительности труда, который наконец покончит с болезнью издержек в здравоохранении, нам следует значительно расширить использование машинного интеллекта в области медицины. Думаю, другого выбора у нас практически нет.
Беспилотные легковые и грузовые машины: Затянувшееся ожидание