Подобные результаты порождают энтузиазм, который порой выливается в хайп. Даже некоторые эксперты по глубокому обучению считают почти данностью, что в относительно близком будущем системы ИИ полностью заменят рентгенологов. Лауреат премии Тьюринга Джеффри Хинтон, пожалуй самый видный пропагандист глубокого обучения, в 2016 году сказал, что «теперь мы можем перестать учить рентгенологов», поскольку «в течение пяти лет глубокое обучение будет показывать лучшие результаты, чем люди». Хинтон сравнил врачей с Хитрым Койотом, персонажем мультфильма «Дорожный бегун», который, как известно, часто оказывается «уже за краем обрыва» и лишь потом смотрит вниз и падает в бездну[78]. Однако через четыре года после заявления Хинтона нет никаких свидетельств нависшей над рентгенологами угрозы безработицы. Практикующие специалисты энергично оспаривают утверждение, будто их профессия скоро исчезнет. В сентябре 2019 года Алекс Братт, врач с факультета рентгенологии Стэнфордской медицинской школы, опубликовал комментарий под названием «Почему рентгенологам незачем бояться глубокого обучения» с доказательствами того, что системы анализа рентгеновских снимков на основе глубокого обучения не обладают гибкостью и целостным мышлением и их применимость в общем ограничена простыми случаями. По его словам, системы ИИ не способны объединять информацию из «истории болезни, результатов анализов, предыдущих снимков» и тому подобного. Таким образом, эта технология пока что работает прекрасно лишь в «случаях, которые можно надежно выявить на основании лишь одного снимка (или нескольких последовательных снимков), не обращаясь к клинической информации или предшествующим обследованиям»[79]. Я подозреваю, что Джефф Хинтон заявил бы на это, что такие ограничения неизбежно будут преодолены, и очень вероятно, что в долгосрочной перспективе он окажется прав, но, на мой взгляд, мы увидим постепенный процесс, а не резкое подрывное изменение.
Картина дополняется множеством других серьезных препятствий, из-за которых очень трудно в обозримом будущем оставить без работы рентгенологов или медиков любых других специальностей. Практически все аспекты здравоохранения зарегулированы подчас многочисленными инстанциями с пересекающимися полномочиями. Совершенно вывести из игры лицензированных врачей будет очень непросто. Авторитет таких организаций, как Американская медицинская ассоциация, дает докторам намного больше власти над собственной судьбой, чем большинству других работников. Существуют также важные вопросы юридической ответственности. Ошибка с плохими последствиями для пациента легко может обернуться судебным преследованием. Пока эта ответственность распределена между тысячами врачей. Если работу будет выполнять не врач, а устройство или алгоритм, разработанный и поставленный заказчику богатой корпорацией, это приведет к концентрации ответственности и может спровоцировать поток судебных исков. Все эти препятствия, наверное, будут преодолены в перспективе, но в обозримом будущем, на мой взгляд, вопрос состоит не в том, заменит ли ИИ рентгенологов, а в том, сможет ли он существенно повысить производительность их труда. Если глубокое обучение позволит рентгенологам анализировать существенно больше снимков за определенный период времени, а также моментально обеспечит их вторым квалифицированным мнением, сводящим ошибки к минимуму, это расширит возможности каждого доктора и сможет со временем заставить студентов-медиков выбирать другую специальность, реагируя на естественный рыночный спрос.
Конечно, визуальные образы не единственный вид информации, поддающийся обработке с помощью алгоритмов глубокого обучения. Переход к электронным медицинским картам создал огромный источник данных, во многих отношениях идеально подходящий для применения искусственного интеллекта. Задействование этого источника для повышения эффективности, сокращения затрат и улучшения результатов лечения пациентов, пожалуй, самый многообещающий вариант использования ИИ в здравоохранении в ближайшем будущем. По некоторым данным, врачебные ошибки — третья по распространенности причина смерти в Соединенных Штатах, уступающая только онкологическим и сердечным заболеваниям. До 440 000 американцев умирают ежегодно вследствие ошибок, которые можно было предотвратить[80]. Особенно часты случаи назначения неправильного лекарства или неверной дозы.