Согласно определению из DMBOK2 распоряжением данными называется деятельность, связанная с несением ответственности и подотчетностью за данные и процессы, обеспечивающие эффективный контроль и использование информационных активов[345]. Распорядители данных выполняют широкий круг функций и различаются по своей позиции в организации и направлению работы. Основные категории этих специалистов мы рассмотрим в главах 10 («Руководство данными») и 16 («Организационные аспекты управления данными»).
8.5. Эволюция управления данными в организациях и референтные модели
Управление данными рассматривается как отдельная область практики и исследования начиная с тех пор, как компании и правительственные учреждения в начале 1980-х годов стали активно использовать для поддержки своей деятельности базы данных и прикладные системы. За прошедшее время роль данных в организациях существенно изменилась и были накоплены обширные знания, связанные с управлением данными. Одна из особенностей области управления данными – большое количество референтных моделей с представительной базой активных пользователей. Это дает возможность изучить и проанализировать, как референтные модели позволяют накапливать знания в области, имеющей решающее значение для цифровизации[346].
Можно выделить три основных этапа развития концепции управления данными (см. табл. 8.1). Они обусловлены технологическим прогрессом и изменениями роли данных. Каждый этап направлен на решение проблем, возникающих в результате этих изменений, и вводит новые подходы к управлению данными, расширяя базу имеющихся знаний.
В таблице 8.2 собраны сведения о наиболее известных референтных моделях управления данными. Для каждой модели указаны организация-поставщик и год ее появления. В списке представлены только те модели, которые имеют практическое значение. Модели концептуального или маркетингового характера в него не вошли.
Из приведенного списка только модели, относящиеся к позициям 1–4, охватывают третий этап развития концепции управления данными. Из них две модели под номером 2 (CDQM и DXM) носят скорее исследовательский характер и довольно сложны для практического применения в большинстве организаций.
* Legner C., Pentek T., Otto B. Accumulating Design Knowledge with Reference Models: Insights from 12 Years’ Research into Data Management // Journal of the Association for Information Systems, 2020, 21(3): 735–770. DOI: 10.17705/1jais.00618. – URL: https://www.researchgate.net/publication/341684789_Accumulating_Design_Knowledge_with_Reference_Models_Insights_from_12_Years%27_Research_into_Data_Management.
* Legner C., Pentek T., Otto B. Accumulating Design Knowledge with Reference Models: Insights from 12 Years’ Research into Data Management // Journal of the Association for Information Systems, 2020, 21(3): 735–770. DOI: 10.17705/1jais.00618. – URL: https://www.researchgate.net/publication/341684789_Accumulating_Design_Knowledge_with_Reference_Models_Insights_from_12_Years%27_Research_into_Data_Management.
Как уже было отмечено в главе 6, в настоящее время, по мнению ряда специалистов, наиболее полные и ценные с методической точки зрения (а также не зависящие от поставщика соответствующих решений) референтные модели управления данными – это DAMA-DMBOK и CMMI DMM. При этом первая ориентирована на формирование способностей организации по управлению данными, а вторая – на оценку зрелости этих способностей[347].
Литература к главе 8
• Aiken P., Harbour T. Data Strategy and the Enterprise Data Executive: Ensuring that Business and IT are in Synch in the Post-Big Data Era. Technics Publications, 2017.
• Deng Z. MIS2502: Data Analytics: Semi-structured Data Analytics. Fox School of Business. Temple University, 2019. – URL: https://slidetodoc.com/mis-2502-data-analyticssemistructured-data-analytics-zhe/.
• Ladley J. Data Governance: How to Design, Deploy, and Sustain an Effective Data Governance Program: 2nd Edition. Academic Press, 2020.
• Управление данными в госсекторе. Навигатор для начинающих / под ред. О. М. Гиацинтова, В. А. Сазонова, М. С. Шклярук. – М.: РАНХиГС, 2022.
Глава 9. Управление данными: принципы и структуры
9.1. Методология DAMA-DMBOK
DAMA-DMBOK