Читаем Том 27. Поэзия чисел. Прекрасное и математика полностью

Как мы уже отмечали, из-за золотого сечения рациональное приближение, описываемое теоремой Гурвица, нельзя улучшить. Это справедливо для золотого числа Ф и всех иррациональных чисел, эквивалентных ему с точки зрения рационального приближения. Иными словами, речь идет об иррациональных числах вида (m·Ф + n)/(р·Ф + q), где m, n, р, q — произвольные целые числа, которые удовлетворяют условию m·q — n·р = ± 1.

Математик Андрей Андреевич Марков совершил важные открытия в теории чисел и теории вероятностей.

Оставим в стороне золотое сечение и все иррациональные числа, эквивалентные ему. Гурвиц доказал, что его теорема допускает более точную оценку, так как константу 1/√5 можно заменить другой, меньшей константой 1/√8: для произвольного иррационального числа а, за исключением золотого числа и эквивалентных ему, существует бесконечное множество дробей p/q таких, что

Это приближение нельзя улучшить: если принять а = √2, то его рациональное приближение не может быть точнее, чем допускает константа 1/√8, умноженная на число, обратное квадрату знаменателя.

Однако если мы оставим в стороне √2 и все эквивалентные ему, то сможем еще больше улучшить рациональное приближение, заменив константу 1/√8 другой, меньшей константой 5/√221. Для любого иррационального числа а, за исключением золотого числа, квадратного корня из 2 и эквивалентных им, существует бесконечно много дробей вида p/q таких, что

Читатель уже наверняка догадался, что теперь существует еще одно иррациональное число, для которого нельзя улучшить это рациональное приближение. Это число — √221. Если исключить его из рассмотрения, то можно получить новое, еще более точное рациональное приближение — 13/√1517, для которого, в свою очередь, также существует «нежелательное» иррациональное число. Так мы постепенно придем к предельному значению 1/3: для любого иррационального числа а, за исключением полученного списка иррациональных чисел и эквивалентных им, существует бесконечно много дробей вида p/q таких, что

В романе и в реальности, отзвуком которой он является, переплетаются судьбы персонажей, и из тесной паутины взаимоотношений рождается свет, озаряющий тайные стороны человеческой природы.

Подобно тому, как Мартин Марко живет в страхе, опасаясь политических репрессий режима Франко, Хулиту душат нормы национально-католической морали. В то время как для Марко возможен только один выход — сдаться, Хулита и ее жених смогли найти выход из ситуации, преодолеть все препятствия и начали встречаться в доме свиданий. Села великолепно передает все моральные противоречия, с которыми сталкиваются его герои. С одной стороны, донья Виситасьон Леклерк, мать Хулиты и сестра доньи Росы, воплощает лицемерную мораль, которая была столь по душе католическим сановникам того времени. Так, донья Виситасьон из сострадания жертвует деньги на крещение «китайских младенцев», за что, предположительно, Господь дарует ей Царствие Небесное после смерти. С другой стороны, Села рисует образ отца Хулиты, дона Роке Моисеса, бездельника, который удачно женился по расчету. Несколько сцен позволяют понять, какой была национал-католическая мораль времен Франко. В одном из эпизодов Хулита и ее отец встречаются на лестнице апартаментов доньи Селии: Хулита возвращается со свидания, а ее отец идет на встречу с одной из своих любовниц.

Подобно тому, как различные грани человеческой природы в романе передаются сплетением судеб его героев, которые кажутся далекими, так и в математике на первый взгляд не связанные между собой результаты скрывают тайные истины. Именно этим свойством обладают числа Маркова и числовые константы, которые упоминаются в теореме Гурвица, по мере того как мы уточняем рациональное приближение (это золотое число, квадратный корень из 2 и последующие иррациональные числа, для которых нельзя получить более точное рациональное приближение).

Ниже приведены первые четыре числа Маркова, то есть решения диофантова уравнения р2 + q2 + r2 = 3·р·q·r, упорядоченные по возрастанию: 1, 2, 5, 13.

Далее перечислены четыре первые константы, полученные при поиске всё более точных рациональных приближений по теореме Гурвица:

1/√5, 1/√8, 5/√221, 13/√1517.

Подобно тому как жизни Мартина Марко, доньи Росы и Хулиты на страницах «Улья» оказываются неразрывно связанными, так и числа Маркова связаны с рациональными приближениями иррациональных чисел, поскольку именно они определяют различные константы, возникающие при поиске рациональных приближений по теореме Гурвица.

Обратите внимание, что два приведенных выше списка чисел в действительности ничем не отличаются. Чтобы показать это, нужен ключ, который позволит преобразовать числа из первого списка в числа второго списка. Этот ключ нашел немецкий математик Оскар Перрон в 1921 году: 

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное