Читаем Том 27. Поэзия чисел. Прекрасное и математика полностью

ЕЩЕ ОДНО ДИ0ФАНТ0В0 УРАВНЕНИЕ

Последняя задача, описанная на этой странице, приведена в «Арифметике» Диофанта в книге VI под номером 17. Диофант нашел ее решение следующим образом. Он ввел новую переменную n — площадь треугольника. Тогда (р·q)/2 = n, то есть р·q = 2·n. Далее Диофант принял р = 2 и q = n. Сумма площади и длины гипотенузы треугольника равняется n + r, периметр треугольника — 2 + n + r. Так как число nr должно быть квадратом, нужно найти такой квадрат, который при увеличении на 2 был бы кубом. Тогда Диофант обозначил длину стороны квадрата через m + 1, длину стороны куба — через m — 1. Теперь нужно найти число m такое, что (m + 1)2 + 2 = (-1)3. Иными словами, m2 + 2·m + 3 = m3 — 3·m2 + 3·m — 1, или, что аналогично, 4·m2 + 4 = m3 + m. Отсюда следует, что 4·(m2 + 1) = m·(m2 + 1), следовательно, m = 4. Таким образом, имеем + r = 52 = 25. Так как треугольник со сторонами р, и r должен быть прямоугольным, имеем: 4 + n2r2. Подставив в это уравнение n = 25 — r, получим 4 + (25 — r)2 = r2. Раскрыв скобки и упростив полученное выражение, имеем: 629 — 50·r = 0. Иными словами, r равно 629/50, следовательно, n и q равны 621/50.

Заметьте, что Диофант решил в целых числах кубическое уравнение х2 + 2 = у3 — его корнями являются х = 5, у = 3. Это уравнение имеет единственное решение в целых числах (именно его нашел Диофант) и бесконечно много дробных решений.

* * *

В 1621 году, спустя почти полтора тысячелетия после того, как Диофант написал свою «Арифметику», шесть сохранившихся книг этого труда были отпечатаны на языке оригинала и в переводе на латынь. Автором этого издания с комментариями стал француз Баше де Меризиак.

«Арифметика» Диофанта — одна из немногих книг, вошедших в историю благодаря одному из своих читателей. Речь о французском адвокате Пьере Ферма. Ферма также был математиком-любителем, однако его «любительские» заслуги намного выше профессиональных достижений многих математиков.

В XVII веке теория чисел еще не была частью роскошного района математики. После удивительного расцвета, достигнутого во времена Диофанта, интерес математиков к теории чисел ослабевал на протяжении полутора тысяч лет, и тут на сцену вышел Ферма и вернул теории чисел прежнюю славу, применив самый действенный способ, какой только известен математикам: он сформулировал несколько интересных задач. Достаточно прочесть его примечания и комментарии на полях «Арифметики» Диофанта. Самуэль Ферма, сын математика, составил сборник этих примечаний и комментариев, дополнил ими издание Баше де Меризиака и опубликовал этот вариант «Арифметики» Диофанта в 1670 году.

Обложка «Арифметики» Диофанта с комментариями Пьера Ферма, изданной его сыном в 1670 году.

В этой книге редко встретишь задачу, предложенную Диофантом или комментарий де Меризиака, для которых Ферма не сформулировал бы дополнение, обобщение или интересную задачу по той же теме. Известнейшую из них Ферма записал на полях книги II рядом с задачей 8: «Представить данный квадрат в виде суммы двух квадратов». Иными словами, в этой задаче Диофант объяснял свой алгоритм нахождения пифагоровых троек: р2 + q2 = r2.

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное