Читаем Том 27. Поэзия чисел. Прекрасное и математика полностью

Величина, введенная Хаусдорфом, позволяет намного точнее определить размерность объекта. Вопреки тому, что нам подсказывают органы чувств, существуют объекты, размерность которых выражается дробями, например 1/2, иррациональными числами, в частности √5, и даже еще более необычными числами. Прошло больше 50 лет с момента, когда Хаусдорф ввел новое понятие размерности, прежде чемБенуа Мандельброт (1924–2010), французский математик польского происхождения, определил фракталы как множества, имеющие дробную размерность Хаусдорфа.

Бенуа Мандельброт, математик, который ввел термин «фрактал». На этой фотографии он изображен на конференции в Варшаве в 2005 году.

Чтобы объяснить понятие размерности Хаусдорфа в общем виде (именно это определение привел сам Хаусдорф), потребуются серьезные знания математики. Тем не менее существует альтернативное определение, не до конца точное, но позволяющее читателю оценить смысл этого понятия. Это альтернативное определение размерности ввели русские математики Лев Понтрягин и Лев Шнирельман. Удивительно, что Понтрягин был слепым — он лишился зрения в 14 лет в результате несчастного случая.

Представьте, что дана плоская фигура, вписанная в квадрат, для которой мы хотим рассчитать размерность Хаусдорфа. Разделим сторону квадрата на несколько равных частей, например на 10. Квадрат окажется разделен на 100 мелких квадратов. Теперь посчитаем, сколько этих квадратов нужно для того, чтобы покрыть рассматриваемую фигуру, и адекватно сравним их число с числом частей, на которые мы разделили сторону квадрата (в нашем случае на 10).

Ключ к задаче — в том, что мы вкладываем в слова «адекватно сравним». Проясним смысл этих слов на простом примере. Пусть рассматриваемой фигурой будет квадрат целиком. Для того чтобы покрыть его, потребуются все квадраты, на которые мы разделили исходный квадрат. Таким образом, если мы разделим сторону квадрата на n равных частей, получим n·n = n2 мелких квадратов. Обратите внимание на число 2 в показателе степени n2 — именно это число и будет размерностью квадрата.

Теперь рассмотрим диагональ квадрата. Разделим сторону квадрата на 4 части. Сколько мелких квадратов понадобится для того, чтобы покрыть его диагональ? Немного подумав, читатель увидит, что для этого потребуется четыре мелких квадрата, так как именно столько квадратов лежит на диагонали большого квадрата. Если мы разделим сторону квадрата на n частей, нам потребуется n квадратов, чтобы покрыть диагональ. Однако n можно записать как n1, то есть n, возведенное в степень 1. Эта степень 1 и будет размерностью диагонали квадрата. Таким образом, любой отрезок будет иметь размерность 1.

Теперь обозначим через F плоскую фигуру, заключенную внутри квадрата, для которой мы хотим определить размерность Хаусдорфа. Разделив сторону квадрата на n частей, подсчитаем, сколько мелких квадратов потребуется, чтобы покрыть фигуру F. Обозначим их число через пр. «Адекватное» сравнение числа nF с числом частей n, на которые мы разделили сторону квадрата, означает определение степени n, соответствующей этому числу nF. Так, в примере с квадратом nn2 соответствующей степенью будет 2. В примере с диагональю квадрата n = n1 соответствующей степенью будет 1. Если мы обозначим этот показатель степени через d, то n, nF и d будут связаны следующим тношением: nF = nd . Применив логарифмы, выразим d через и n: d — это логарифм nF разделенный на логарифм n:

Чем больше n, то есть число частей, на которые мы делим сторону квадрата, тем ближе число будет к размерности Хаусдорфа для фигуры F. Размерность Хаусдорфа будет пределом, рассчитываемым при делении стороны квадрата на бесконечно большое число бесконечно малых равных частей.

Пример с окружностями Аполлония

Построим пример фрактала. Для этого вновь рассмотрим окружности Аполлония, о которых мы говорили в главе 2, так как мы будем строить фрактал на основе касательных окружностей. Построим три окружности, касающиеся друг друга (см. рисунок слева внизу). Как мы уже отмечали в предыдущей главе, существуют две другие окружности, касающиеся этих трех. Имеем пять окружностей (см. рисунок справа внизу).

Построение фрактала на основе трех касающихся окружностей.

Выберем три из них, касающиеся друг друга, и построим две соответствующие касательные окружности (их существование следует из теоремы Аполлония). В конечном итоге, с учетом повторений, получим шесть новых окружностей. Вкупе с пятью исходными имеем 11 окружностей (см. рисунок слева внизу). Повторим построение для этих 11 окружностей, затем — для окружностей, построенных на следующем этапе (см. рисунок справа внизу), и так далее до бесконечности. Полученные окружности носят название «ковер Аполлония» и представляют собой пример фрактала.

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное