Читаем The End of Time: The Next Revolution in Physics полностью

For suppose there is a pond-like aether and that nothing is faster than light. It is natural to assume that it travels equally fast in all directions. Then how are we to define simultaneity throughout the aether? Einstein proposed setting up a master clock at a central reference point, sending a light signal to some distant identical clock at rest relative to it, and letting the signal be reflected back to the master clock. If it measures a time T for the round trip, we would obviously say that the light took ½T to reach the distant clock, which can be synchronized to read t + ½T on the arrival of a signal sent by the master clock when it reads t. In this way, clocks throughout the aether can be synchronized with the master clock. Standard measuring rods can be used to measure the distances between them. This is the obvious way to set up a space-time grid if the aether theory is correct.

However, it does assume that the aether is ‘visible’ and that we know when we are at rest in it. But this the relativity principle denies. Imagine a family of observers, equipped with clocks to measure time and rods to measure length, distributed in space and at rest relative to one another. Believing themselves at rest in the aether, they define simultaneity by Einstein’s prescription. There is also a second family, with identical rods and clocks, also at rest relative to one another but moving uniformly relative to the first. By the relativity principle, they can equally believe themselves at rest in the aether. So they too will use Einstein’s prescription to define simultaneity. Just as belief in the aether theory makes the prescription natural, belief in the relativity principle makes it natural for both families to adopt it. Nothing in nature privileges one family over the other. Whatever one family does, the other can do with equal right. In particular, each can use Einstein’s prescription.

The inescapable consequence is that the two families will disagree about which events are simultaneous. However, by accepting this, Einstein achieved his first goal – the demonstration that light propagation takes an identical form for both families (Box 9). This remarkable fact – that the relativity principle holds for light propagation and that simultaneity depends on the observer and on convention – is thus the great denouement towards which so much wonderful physics in the nineteenth century had been tending. It also showed that the aether is a redundant concept, since no experiment can establish whether we are moving relative to it.

Lack of simultaneity was only the beginning. Einstein went on to draw further amazing consequences from his iron insistence that all phenomena must unfold in exactly the same way for any two families of observers in uniform motion relative to each other. In particular, he was able to make some startling predictions about rods and clocks. The point is that the facts of light propagation are established by means of physical rods and clocks, but these tools are not immune to the relativity principle. Using simple equations and precise arguments, Einstein showed that two such families must each come to the conclusion that the clocks of the other family, moving relative to them, run slower than their own clocks. Each family also concludes that the rods of the other family are shorter than their own.

What is so remarkable about these results – and it seems so impossible that many quite intelligent people still refuse to accept it – is their mutual nature. How can it be that each family finds that the clocks of the other family run slower than their own? Box 10 explains.

BOX 9 Relativity in One Diagram and 211 Words

Figure 25 Alice (A) and Bob (B) believe they are at rest in the aether, and therefore draw a grid (dashes) with time vertical and space (only one dimension shown) horizontal. To synchronize their clocks, Alice sends Bob a light signal (solid line), which reaches him at X, where it is reflected back to Alice at T. Alice concludes that the signal reached Bob when she was at H. Their identical twins Alice* (A*) and Bob* (B*) are moving uniformly relative to them, but also believe they are at rest. Alice* sends a light signal, just as her twin does, at the moment they meet. It reaches Bob* at X*, and the reflection of it returns to Alice* at T*. She therefore concludes that her signal reached Bob* at H*, so she and Bob* have a grid (dots) inclined relative to their twins’ grid. The pairs do not agree on which events are simultaneous. Alice and Bob think H and X are, their twins think H* and X* are. However, they confirm the relativity principle, since both find that light travels along rays parallel to the diagonals (AX, XT and A*X*, X*T*) of their respective coordinate grids. Despite appearances, the situation is symmetric – in Alice* and Bob*’s grid their twins’ grid appears skew.

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука