For suppose there is a pond-like aether and that nothing is faster than light. It is natural to assume that it travels equally fast in all directions. Then how are we to define simultaneity throughout the aether? Einstein proposed setting up a master clock at a central reference point, sending a light signal to some distant identical clock at rest relative to it, and letting the signal be reflected back to the master clock. If it measures a time
However, it does assume that the aether is ‘visible’ and that we know when we are at rest in it. But this the relativity principle denies. Imagine a family of observers, equipped with clocks to measure time and rods to measure length, distributed in space and at rest relative to one another. Believing themselves at rest in the aether, they define simultaneity by Einstein’s prescription. There is also a second family, with identical rods and clocks, also at rest relative to one another but moving uniformly relative to the first. By the relativity principle, they can equally believe themselves at rest in the aether. So they too will use Einstein’s prescription to define simultaneity. Just as belief in the aether theory makes the prescription natural, belief in the relativity principle makes it natural for both families to adopt it. Nothing in nature privileges one family over the other. Whatever one family does, the other can do with equal right. In particular, each can use Einstein’s prescription.
The inescapable consequence is that the two families will disagree about which events are simultaneous. However, by accepting this, Einstein achieved his first goal – the demonstration that light propagation takes an identical form for both families (Box 9). This remarkable fact – that the relativity principle holds for light propagation and that simultaneity depends on the observer and on convention – is thus the great denouement towards which so much wonderful physics in the nineteenth century had been tending. It also showed that the aether is a redundant concept, since no experiment can establish whether we are moving relative to it.
Lack of simultaneity was only the beginning. Einstein went on to draw further amazing consequences from his iron insistence that all phenomena must unfold in exactly the same way for any two families of observers in uniform motion relative to each other. In particular, he was able to make some startling predictions about rods and clocks. The point is that the facts of light propagation are established by means of physical rods and clocks, but these tools are not immune to the relativity principle. Using simple equations and precise arguments, Einstein showed that two such families must each come to the conclusion that the clocks of the other family, moving relative to them, run slower than their own clocks. Each family also concludes that the rods of the other family are shorter than their own.
What is so remarkable about these results – and it seems so impossible that many quite intelligent people still refuse to accept it – is their mutual nature. How can it be that each family finds that the clocks of the other family run slower than their own? Box 10 explains.
BOX 9 Relativity in One Diagram and 211 Words
Figure 25 Alice (