All this was changed by Einstein’s 1905 paper. Because of his quantum doubts, he distrusted explicit dynamical models. Within a few years a dualistic scheme appeared. Newton’s absolute space and time were replaced by space-time, but this was not the complete story. Actual physics emerged only with the statements about how rods and clocks behaved in space-time. This is where the scheme was dualistic. The behaviour of rods and clocks – and with it a theory of duration – never emerged organically from the structure of space-time, it was simply postulated. This is not to say the dualistic scheme is wrong in the statements it makes. Einstein’s theory is as secure as its foundations; there is no hint of failing there. However, insight into the nature of time and duration was lost.
For all that, general relativity does contain, hidden away in its mathematics (as I have already indicated), a theory of duration and the spatiotemporal framework. However, this did not come to light for many decades and even now is not properly appreciated. How this came about, and an account of the ‘hidden dynamical core’ of general relativity, are the subject of the next chapters.
It may help to end this chapter with a general remark on time. It is impossible to understand relativity if one thinks that time passes independently of the world. We come to that view only because change is so all-pervasive and so many different changes all seem to march in perfect step. Relativity is not about an abstract concept of time at all: it is about physical devices called clocks. Once we grasp that, many difficulties fall away. If light did not travel so much faster than normal objects, we would observe relativistic effects directly and they would not strike us as strange. There is nothing inherently implausible in the idea that clocks travelling past us at high speed should be observed to go slower than the watch on our wrist. Motion of the clock might well alter the rate at which it ticks. After all, when we swim through water, we feel the way our body responds. If there were an aether, clocks could well be affected by their motion through it. What is difficult to grasp is how observers travelling with the moving clocks think our wristwatch is running slow, while we think just the same about their clocks (this apparent logical impossibility has been dealt with in Box 10). However, the important thing is to get away from the idea that time is
CHAPTER 9
Minkowski the Magician
THE NEW ARENA
Hermann Minkowski’s ideas have penetrated deep into the psyche of modern physicists. They find it hard to contemplate any alternative to his grand vision, presented in a famous lecture at Cologne on 21 September 1908. Its opening words, a magical incantation if ever there was one, are etched on their souls:
The views of space and time which I wish to lay before you have sprung from the soil of experimental physics, and therein lies their strength. They are radical. Henceforth space by itself, and time by itself, are doomed to fade away into mere shadows, and only a kind of union of the two will preserve an independent reality.
The branch of knowledge that considers what exists is ontology. These three sentences changed the ontology of the world – for physicists at least.
For most physicists in the nineteenth century, space was the most fundamental thing. It persisted in time and constituted the deepest level in ontology. Space, in turn, was made up of points. They were the ground of being, conceived as identical, infinitesimal grains of sand close-packed in a block. Space was like glass. It was, of course, three-dimensional. However, alerted by Einstein’s work to how the relativity principle mixed up space and time, Minkowski commented that ‘Nobody has ever noticed a place except at a time, or a time except at a place.’ He had the idea that space and time belonged together in a far deeper sense than anyone had hitherto suspected. He fused them into