Читаем The End of Time: The Next Revolution in Physics полностью

Virtually all physicists were convinced that these electromagnetic excitations must be carried by some mechanical aether. This put a remarkable twist into the theory of motion and the status of Newton’s absolute space. Even in the framework of Newtonian theory, there had always been one serious problem with the notion. Newton was not entirely frank about it. In his guts, he certainly believed in a state of absolute rest. When he introduced absolute space, his words suggested the existence of one unique framework of motion. Either you moved with respect to it or you did not. However, in the body of the Principia he stated and used correctly the relativity principle, according to which the motions within a system are completely unaffected by any uniform overall motion it has (Box 5). This seriously undermined the idea of a unique state of rest – no criterion could establish whether one were in it or moving uniformly.

Figure 24 The pond argument. According to the spectator standing on the bank, the ripples move to the left and right with equal speed. But her partner, walking along the bank, sees things differently. He can almost keep up with the waves going to the right, while the left-moving waves recede from him almost twice as fast.

It was soon seen that the aether should introduce an experimentally verifiable standard of rest. The argument is simple and seems irrefutable (Figure 24). If you throw a stone onto the still surface of a pond, waves spread out in concentric rings. The water molecules do not move with the wave, they merely go up and down. The water plays the role of the conjectured aether: itself at rest, it is the material carrier of the waves. As seen by the woman standing on the bank, the waves spread out in all directions with the same speed. But for her partner walking along the bank, the wave process unfolds differently. The waves moving in the same direction as him have a different velocity relative to him compared with the waves moving in the opposite direction. A fast walker will even overtake some of the waves. The relativity principle cannot hold for such processes, and it was therefore expected that it would hold only for the mechanical processes described by Newton’s laws, but not for optical and electromagnetic phenomena. Moreover, as the Earth revolves in its orbit around the Sun it must be continually changing its speed through the aether. This ought to result in observable effects.

In fact, the argument is not quite so simple. Everyone agreed that light must be carried by an aether, but were all parts of the aether at rest relative to one another? As the Earth orbits the Sun, might it not carry some aether with it? It was also necessary to consider what would happen to light passing through water flowing on the Earth. Would the aether be carried along, partially or completely, by the water relative to the Earth? In fact, many issues had to be considered, including aberration, which makes the stars seem to shift slightly towards the point in the sky towards which the Earth is moving at any instant as it orbits the Sun. The arguments, some of which predated Maxwell’s work, developed over a period of eighty years, and many important experiments were made. By 1895, when the Dutch physicist Hendrik Anton Lorentz published an influential study, a consensus had more or less developed. It was that all known experimental results, with one crucial exception, could be explained by assuming the existence of a perfectly rigid aether.

The aether as proposed by Lorentz was actually devoid of all physical properties except rigidity. It was simply there to carry the excitations of Maxwell’s electromagnetic field and, in Lorentz’s words, to be the framework ‘relative to which all observable motions of the celestial bodies take place’. It therefore supplied a standard of rest like the water in the pond.

The one exception with which Lorentz had to contend was the famous Michelson-Morley experiment performed with great accuracy in 1887. Based on interference between light beams moving in the direction of the Earth’s motion and at right angles to it, it was designed to measure the change in the speed of the Earth’s motion through the aether over the course of a year. Its accuracy was sufficient to detect even only one-hundredth of the expected effect. But nothing was observed. It was a great surprise, and very puzzling.

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука