Читаем Теория струн и скрытые измерения Вселенной полностью

Удобно, что эта задача может быть представлена не только в геометрической форме. Она также может быть записана в виде дифференциального уравнения в частных производных. По словам Эрвина Лутвака из Политехнического института при Нью-Йоркском университете: «Если вы сможете решить геометрическую задачу, то автоматически получите дополнительный приз: решение сложнейшего дифференциального уравнения в частных производных. Такая взаимосвязь между геометрией и дифференциальными уравнениями в частных производных делает эту задачу столь важной».[49]

Мы с Ченгом нашли способ решения этой задачи, и наша статья, посвященная этому вопросу, вышла в 1976 году. Как выяснилось, другое решение было представлено несколькими годами раньше — в 1971 году российским математиком Алексеем Погореловым. Ни я, ни Ченг никогда не видели его статьи, поскольку она была опубликована на родном языке Погорелова. В конце концов, все свелось к решению сложнейшего дифференциального уравнения в частных производных из тех, которые никогда до этого не решались.

Несмотря на то что никому до нас не удавалось решить проблему данного типа, за исключением Погорелова, работа которого была нам неизвестна, процедура, позволяющая работать с нелинейными дифференциальными уравнениями в частных производных, на тот момент была уже хорошо разработана. Метод работы с подобными уравнениями, получивший название метода непрерывности, был основан на использовании последовательных приближений. И хотя этот общий подход никоим образом нельзя было назвать новым, особенность состояла в том, что каждая конкретная задача предусматривала разработку своей собственной стратегии, необходимой для ее решения. Основная идея заключалась в последовательной аппроксимации решения различными функциями так, чтобы каждое следующее приближение давало результаты лучше, чем предыдущее. Суть доказательства состояла в том, чтобы показать, что после достаточно большого числа итераций приближенная функция с большой точностью совпадет с решением искомого дифференциального уравнения. В случае удачи полученное путем аппроксимации приближение нужно рассматривать не как решение дифференциального уравнения, которое можно представить в виде определенной формулы, а как доказательство того факта, что решение существует. Для гипотезы Калаби и других задач того же типа существование решения дифференциального уравнения в частных производных эквивалентно доказательству существования определенной геометрии для заданных «топологических» условий. Это не означает, что вы ничего не знаете о решении, существование которого только что доказали. Схема, которая была использована для доказательства существования решения, зачастую может быть легко преобразована в численный метод для приближенного решения на компьютере. О численных методах речь пойдет в девятой главе.

Рис. 5.1. Математик Ш. Ю. Ченг (фотография Джорджа М. Бергмана)

Метод непрерывности был назван так потому, что он подразумевает непрерывное преобразование решения некоего известного уравнения вплоть до его полного совпадения с решением искомого. Процедуру преобразования, как правило, разбивают на две части, одна из которых работает только в непосредственной близости от известного решения.

Рис. 5.2. Наглядная иллюстрация метода Ньютона. Для того чтобы найти точку пересечения определенной кривой или функции с осью X, сначала нужно наугад подобрать некую точку x0 наиболее подходящую для этого. Затем необходимо провести касательную к кривой в точке x0 и отметить точку, в которой эта касательная пересечет ось X (это будет точка x1). В том случае, если наше изначальное предположение не было полностью ошибочным, продолжая этот процесс, мы будем получать точки все ближе и ближе к искомой

Одна из этих частей носит название метода Ньютона, так как она в определенной степени основана на методе, разработанном Исааком Ньютоном более трехсот лет назад. Для того чтобы продемонстрировать этот метод в действии, рассмотрим функцию y=x3-3x+1, которая описывает кривую, пересекающую ось X в трех различных точках, являющихся корнями этого полинома. Подход, предложенный Ньютоном, позволяет определить положение корней на оси X, что далеко не всегда можно сделать, просто взглянув на уравнение. Предположим, что напрямую решить уравнение нельзя, однако один из корней соответствующей функции можно найти вблизи точки x1. Касательная, проведенная к кривой в этой точке, пересечет ось X в другой точке — x2, находящейся ближе к искомому корню, чем точка x1. Если мы проведем касательную в точке x2, она пересечет ось X в точке x3, которая будет еще ближе к искомому корню. Таким образом, многократное повторение данной процедуры должно довольно быстро привести нас к искомому корню, если только начальная точка x1 была выбрана более-менее удачно.

Перейти на страницу:

Все книги серии New Science

Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука
Идеальная теория. Битва за общую теорию относительности
Идеальная теория. Битва за общую теорию относительности

Каждый человек в мире слышал что-то о знаменитой теории относительности, но мало кто понимает ее сущность. А ведь теория Альберта Эйнштейна совершила переворот не только в физике, но и во всей современной науке, полностью изменила наш взгляд на мир! Революционная идея Эйнштейна об объединении времени и пространства вот уже более ста лет остается источником восторгов и разочарований, сюрпризов и гениальных озарений для самых пытливых умов.История пути к пониманию этой всеобъемлющей теории сама по себе необыкновенна, и поэтому ее следует рассказать миру. Британский астрофизик Педро Феррейра решил повторить успех Стивена Хокинга и написал научно-популярную книгу, в которой доходчиво объясняет людям, далеким от сложных материй, что такое теория относительности и почему споры вокруг нее не утихают до сих пор.

Педро Феррейра

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Физика / Научпоп / Образование и наука / Документальное
Биоцентризм. Как жизнь создает Вселенную
Биоцентризм. Как жизнь создает Вселенную

Время от времени какая-нибудь простая, но радикальная идея сотрясает основы научного знания. Ошеломляющее открытие того, что мир, оказывается, не плоский, поставило под вопрос, а затем совершенно изменило мироощущение и самоощущение человека. В настоящее время все западное естествознание вновь переживает очередное кардинальное изменение, сталкиваясь с новыми экспериментальными находками квантовой теории. Книга «Биоцентризм. Как жизнь создает Вселенную» довершает эту смену парадигмы, вновь переворачивая мир с ног на голову. Авторы берутся утверждать, что это жизнь создает Вселенную, а не наоборот.Согласно этой теории жизнь – не просто побочный продукт, появившийся в сложном взаимодействии физических законов. Авторы приглашают читателя в, казалось бы, невероятное, но решительно необходимое путешествие через неизвестную Вселенную – нашу собственную. Рассматривая проблемы то с биологической, то с астрономической точки зрения, книга помогает нам выбраться из тех застенков, в которые западная наука совершенно ненамеренно сама себя заточила. «Биоцентризм. Как жизнь создает Вселенную» заставит читателя полностью пересмотреть свои самые важные взгляды о времени, пространстве и даже о смерти. В то же время книга освобождает нас от устаревшего представления, согласно которому жизнь – это всего лишь химические взаимодействия углерода и горстки других элементов. Прочитав эту книгу, вы уже никогда не будете воспринимать реальность как прежде.

Боб Берман , Роберт Ланца

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Биология / Прочая научная литература / Образование и наука

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука