Гиперболические дифференциальные уравнения описывают процессы, подобные волнам или колебаниям, которые никогда не достигают равновесного состояния. Решения таких уравнений, в отличие от решений эллиптических, обычно обладают сингулярностями, и работать с ними намного сложнее. Если с линейными гиперболическими уравнениями, в которых изменение одной переменной приводит к пропорциональному изменению другой, мы уже научились управляться достаточно хорошо, то каких-либо эффективных инструментов для работы с нелинейными гиперболическими уравнениями, а именно для управления возникающими в них сингулярностями, попросту не существует.
Параболические уравнения лежат примерно где-то посередине. Они описывают стабильные физические системы, такие как колеблющаяся барабанная мембрана, которые только стремятся к равновесию, но на данный момент еще его не достигли, что привносит в физическую картину зависимость от времени. Эти уравнения менее склонны к сингулярностям, чем гиперболические, и сгладить их гораздо легче, что с точки зрения сложности решения опять-таки ставит их где-то между эллиптическими и гиперболическими.
Но существуют и еще более серьезные математические проблемы. Тогда как простейшие уравнения Монжа-Ампера содержат только две переменные, в более сложных случаях количество переменных значительно больше двух. Эти уравнения выходят за рамки гиперболических — их иногда называют
Уравнения, используемые в гипотезе Калаби, были нелинейными эллиптическими. Несмотря на связь этих уравнений с гиперболическими уравнениями поля Эйнштейна, гипотеза Калаби основана на несколько иных геометрических структурах. В рассматриваемом нами случае мы предполагаем, что время в нашей задаче остановилось, почти как в известной сцене из «Спящей красавицы», где на протяжении сотни лет никто и ничто не может сдвинуться с места. Благодаря этому допущению в доказательстве гипотезы Калаби можно было использовать эллиптические уравнения, устранив зависимость от времени. Это стало причиной, по которой я надеялся на то, что инструменты геометрического анализа — и в том числе те, о которых уже было сказано выше, — смогут быть с успехом использованы для решения нашей задачи.
Впрочем, даже имея в своем распоряжении все необходимые инструменты, мне предстояло проделать немалую подготовительную работу. Частично это было обусловлено тем, что никто до меня не решал комплексные уравнения Монжа-Ампера для случая более чем одного измерения. Как альпинист, постоянно стремящийся к покорению новых высот, я стремился к покорению более высоких размерностей. Чтобы подготовить себя к схватке с многомерным уравнениям Монжа-Ампера, нелинейность которых сама собой подразумевалась, мы с моим другом Ш. Ченгом принялись за исследование различных многомерных случаев, начав с задач в вещественных числах с целью впоследствии перейти к более сложным комплексным уравнениям.
Для начала мы рассмотрели знаменитую задачу, выдвинутую на рубеже XX века Германом Минковским. Задача Минковского состояла в том, чтобы установить возможность или невозможность существования некоей структуры, удовлетворяющей определенному набору критериев. Рассмотрим простой многогранник. Его структуру можно охарактеризовать, подсчитав число граней и ребер и определив их размеры. Задача Минковского состояла в обратном: можно ли, зная форму, площадь, число и ориентацию граней, определить, существует ли в действительности многогранник, удовлетворяющий данным критериям, и если да, то будет ли он единственным?
Задача на самом деле была более общей, поскольку имела отношение не только к многогранникам, но и в принципе к любым выпуклым поверхностям. Вместо того чтобы говорить об ориентации граней, с равным успехом можно говорить о кривизне, указав для каждой точки поверхности направление перпендикулярных к ней —