Читаем Структура реальности. Наука параллельных вселенных полностью

В отличие от Пифагора, Платон не испытывал особого пристрастия к натуральным числам. Его реальность содержала формы всех понятий. Например, она содержала форму совершенного круга. «Круги», которые мы видим, никогда не являются настоящими кругами. Они не идеально круглые, не идеально плоские; у них есть конечная толщина и т. д. Все они несовершенны.

Затем Платон указал проблему. Принимая во внимание всё это земное несовершенство (и, мог бы добавить он, наш несовершенный сенсорный доступ даже к земным кругам), как вообще мы можем знать то, что мы знаем о реальных, совершенных кругах? Очевидно, что мы обладаем знанием о них, но каким образом? Где Евклид приобрёл знание геометрии, которое выразил в своих знаменитых аксиомах, если у него не было ни подлинных кругов, ни точек, ни прямых? Откуда исходит уверенность в математическом доказательстве, если никто не способен ощутить те абстрактные сущности, на которые оно ссылается? Ответ Платона заключался в том, что знание о таких вещах мы получаем не из этого мира теней и иллюзий, а непосредственно из реального мира форм. Мы обладаем совершенным врождённым знанием того мира, которое, как он считал, забывается при рождении, а затем скрывается под слоями ошибок, вызванных тем, что мы доверяем своим чувствам. Но реальность можно вспомнить, усердно применяя «разум», что даёт затем абсолютную уверенность, которой никогда не обеспечивает опыт.

Интересно, кто-нибудь когда-нибудь верил в эту весьма сомнительную фантазию (включая самого Платона, который всё-таки был очень компетентным философом, считавшим, что публике стоит говорить благородную ложь)? Тем не менее поставленная им проблема — откуда у нас берётся знание абстрактных сущностей, не говоря уж об уверенности в нём, — достаточно реальна, а некоторые элементы предложенного Платоном решения с тех пор стали частью господствующей теории познания. В частности, фактически все математики до сегодняшнего дня без критики принимают основную идею о том, что математическое и естественнонаучное знание проистекает из различных источников и что «особый» источник математики придаёт ей абсолютную достоверность. Сейчас этот источник математики называют математической интуицией, однако он играет ту же самую роль, что и «воспоминания» Платона о царстве форм.

Математики много и мучительно спорили о том, открытия каких в точности видов совершенно надёжного знания можно ожидать от нашей математической интуиции. Другими словами, они согласны, что математическая интуиция — источник абсолютной определённости, но не могут прийти к соглашению относительно того, что она им говорит! Очевидно, что это повод для бесконечных, неразрешимых споров.

Большая часть таких споров неизбежно вращалась вокруг допустимости или недопустимости различных методов доказательства. Одно из разногласий было связано с так называемыми «мнимыми» числами. Мнимые числа — это квадратные корни из отрицательных чисел. Новые теоремы об обычных, «действительных» числах доказывали, обращаясь на промежуточных этапах рассуждения к свойствам мнимых чисел. Например, так были доказаны первые теоремы о распределении простых чисел. Однако некоторые математики возражали против мнимых чисел на том основании, что они нереальны. (Современная англоязычная терминология, в которой действительные числа обозначаются словом real, всё ещё отражает это старое разногласие, хотя сегодня мы считаем, что мнимые числа столь же реальны, как и действительные.) Я полагаю, что учителя в школе говорили этим математикам, что не допускается извлекать квадратный корень из минус единицы, и, поэтому они не понимали, почему кто-то другой может это сделать. Нет сомнения в том, что они называли этот злопыхательский порыв «математической интуицией». Однако другие математики обладали другой интуицией. Они понимали, что такое мнимые числа, и как они согласуются с действительными. Почему, думали они, человек не должен определять новые абстрактные сущности, имеющие любые свойства, какие ему нравятся? Безусловно, единственным законным основанием запретить могла быть только логическая несовместимость требуемых свойств. (Сегодня это, в сущности, является консенсусом, который математик Джон Хортон Конуэй[44] задиристо назвал Освободительным движением математиков.) Как известно, никто не доказал, что система мнимых чисел непротиворечива. Но ведь никто не доказал и того, что обычная арифметика натуральных чисел является непротиворечивой!

Перейти на страницу:

Похожие книги

12 недель в году
12 недель в году

Многие из нас четко знают, чего хотят. Это отражается в наших планах – как личных, так и планах компаний. Проблема чаще всего заключается не в планировании, а в исполнении запланированного. Для уменьшения разрыва между тем, что мы хотели бы делать, и тем, что мы делаем, авторы предлагают свою концепцию «года, состоящего из 12 недель».Люди и компании мыслят в рамках календарного года. Новый год – важная психологическая отметка, от которой мы привыкли отталкиваться, ставя себе новые цели. Но 12 месяцев – не самый эффективный горизонт планирования: нам кажется, что впереди много времени, и в результате мы откладываем действия на потом. Сохранить мотивацию и действовать решительнее можно, мысля в рамках 12-недельного цикла планирования. Эта система проверена спортсменами мирового уровня и многими компаниями. Она поможет тем, кто хочет быть эффективным во всем, что делает.На русском языке публикуется впервые.

Брайан Моран , Майкл Леннингтон

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
1991. Хроника войны в Персидском заливе
1991. Хроника войны в Персидском заливе

Книга американского военного историка Ричарда С. Лаури посвящена операции «Буря в пустыне», которую международная военная коалиция блестяще провела против войск Саддама Хусейна в январе – феврале 1991 г. Этот конфликт стал первой большой войной современности, а ее планирование и проведение по сей день является своего рода эталоном масштабных боевых действий эпохи профессиональных западных армий и новейших военных технологий. Опираясь на многочисленные источники, включая рассказы участников событий, автор подробно и вместе с тем живо описывает боевые действия сторон, причем особое внимание он уделяет наземной фазе войны – наступлению коалиционных войск, приведшему к изгнанию иракских оккупантов из Кувейта и поражению армии Саддама Хусейна.Работа Лаури будет интересна не только специалистам, профессионально изучающим историю «Первой войны в Заливе», но и всем любителям, интересующимся вооруженными конфликтами нашего времени.

Ричард С. Лаури

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Прочая справочная литература / Военная документалистика / Прочая документальная литература
100 способов уложить ребенка спать
100 способов уложить ребенка спать

Благодаря этой книге французские мамы и папы блестяще справляются с проблемой, которая волнует родителей во всем мире, – как без труда уложить ребенка 0–4 лет спать. В книге содержатся 100 простых и действенных советов, как раз и навсегда забыть о вечерних капризах, нежелании засыпать, ночных побудках, неспокойном сне, детских кошмарах и многом другом. Всемирно известный психолог, одна из основоположников французской системы воспитания Анн Бакюс считает, что проблемы гораздо проще предотвратить, чем сражаться с ними потом. Достаточно лишь с младенчества прививать малышу нужные привычки и внимательно относиться к тому, как по мере роста меняется характер его сна.

Анн Бакюс

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Детская психология / Образование и наука