Подобные разногласия существовали и в отношении допустимости использования бесконечных чисел, а также множеств, содержащих бесконечно много элементов, и бесконечно малых величин, применяемых в дифференциальном и интегральном исчислении. Давид Гильберт[45], создавший бо́льшую часть математического аппарата, как для общей теории относительности, так и для квантовой теории, заметил, что «математическая литература переполнена бессмыслицами и нелепостями, имеющими свой источник в бесконечности». Некоторые математики, как мы увидим, вовсе отрицали возможность корректных рассуждений о бесконечных сущностях. Несмотря на впечатляющий прогресс чистой математики в XIX веке, он мало что дал для разрешения этих разногласий. Напротив, он только усугублял их и порождал новые. По мере своего усложнения математические рассуждения неизбежно удалялись от повседневной интуиции, что привело к двум важным противоположным эффектам. С одной стороны, математики всё более придирчиво относились к доказательствам, которые, чтобы быть принятыми, должны были удовлетворять всё более жёстким стандартам строгости. Однако, с другой стороны, изобретались более мощные
Таким образом, к 1900 году наступил кризис оснований математики, а именно, оказалось, что этих оснований не было. Но что же произошло с законами чистой логики? Разве не им полагалось разрешать все споры в царстве математики? Прискорбный факт заключался в том, что теперь математические споры, в сущности, и велись о «законах чистой логики». Первым эти законы кодифицировал ещё Аристотель в IV веке до н. э., положив начало тому, что сегодня называют
Другими словами, это правило гласило, что если в доказательстве появляется утверждение вида «все А имеют свойство В» (как в данном случае «все люди смертны») и другое утверждение вида «индивидуум X есть А» (как в данном случае «Сократ — человек»), то далее в доказательстве можно обоснованно использовать утверждение «X имеет свойство В» («Сократ смертен»), и в частности, это является обоснованным выводом. Силлогизмы выражали то, что мы назвали бы
Аристотель заявил, что все обоснованные доказательства можно выразить в виде силлогизмов. Но он не доказал это! Проблема же теории доказательства заключалась в том, что лишь очень небольшое число современных математических доказательств представлялось в виде чистой последовательности силлогизмов; более того, большинство из них невозможно было привести к такому виду даже в принципе. Тем не менее математики в большинстве своём не могли заставить себя ограничиваться аристотелевскими принципами, так как некоторые новые доказательства казались столь же самоочевидно корректными, как и шаблоны умозаключений Аристотеля. Математика развивалась. Новые инструменты, такие как математическая логика и теория множеств, позволили связывать математические структуры новыми способами. Благодаря этому появились новые самоочевидные истины, независимые от классических правил вывода, и поэтому классические правила стали самоочевидно неадекватными. Но какие же из новых методов доказательства были по-настоящему безошибочными? Как следовало изменить правила вывода, чтобы они обрели законченность, на которую ошибочно претендовал Аристотель? Как можно было вернуть тот абсолютный авторитет, которым обладали старые правила, если математики не могли прийти к соглашению относительно того, что является самоочевидным, а что бессмысленным?