Поскольку в разуме большинства людей сам закон исключённого третьего подкреплён мощной интуицией, его отрицание естественным образом вызывает у неинтуиционистов сомнение в том, так ли уж самоочевидна надёжность интуиции интуиционистов. Или, если мы сочтём, что закон исключённого третьего исходит из
Но всё это была критика интуиционизма извне. Это не опровержение: интуиционизм невозможно опровергнуть вообще. Если кто-либо настаивает, что непротиворечивость высказывания для него самоочевидна, то доказать его неправоту невозможно так же, как и если бы он настаивал на том, что существует только он один. Однако, как и в случае с солипсизмом в целом, воистину роковая ошибка интуиционизма открывается не тогда, когда на него нападают, а тогда, когда его принимают всерьёз в качестве объяснения его собственного, произвольно усечённого мира. Интуиционисты верят в реальность конечного множества натуральных чисел 1, 2, 3… и даже числа 10 949 769 651 859. Но интуитивный аргумент, состоящий в том, что, раз у каждого из этих чисел есть следующее, то, они образуют бесконечную последовательность, для интуиционистов не более чем самообман и потому неубедителен. Но разрывая связь между своей версией абстрактных «натуральных чисел» и интуитивным представлением, которое эти числа должны были первоначально формализовать, интуиционисты отказывают себе в праве использовать обычную объяснительную структуру, через которую понимаются натуральные числа. Это создаёт проблему для каждого, кто предпочитает объяснения необъяснённым усложнениям. Вместо того чтобы решить эту проблему, предоставив альтернативную или более глубокую объяснительную структуру для натуральных чисел, интуиционизм делает то же самое, что делала Инквизиция и что делали солипсисты: он ещё дальше уходит от объяснений. Он вводит дальнейшие необъяснённые усложнения (в данном случае — отрицание закона исключённого третьего), единственная цель которых состоит в том, чтобы позволить интуиционистам вести себя так, как если бы объяснения их противников были истинными, но не делая из этого никаких выводов относительно реальности.
Точно так же как солипсизм начинается со стремления упростить пугающе разнообразный и неопределённый мир, но при серьёзном к нему отношении оказывается реализмом,
Давид Гильберт предложил план гораздо более соответствующий здравому смыслу — хотя, в конечном счёте, и обречённый — «раз и навсегда убедиться в надёжности математических методов». План Гильберта основывался на идее непротиворечивости. Он надеялся составить однажды и навсегда полный набор современных правил вывода математических доказательств с определёнными свойствами. Количество таких правил должно было быть конечным. Они должны были быть применимы непосредственно, так, чтобы определение того, удовлетворяет ли им какое-то предполагаемое доказательство, не вызывало бы споров. Желательно, чтобы эти правила были интуитивно самоочевидными, но это не было первостепенным требованием для прагматичного Гильберта. Он был бы удовлетворён, если бы правила лишь умеренно соответствовали интуиции при условии, что он мог бы быть уверен в их непротиворечивости. То есть, если правила определили данное доказательство как корректное, он хотел быть уверен, что они никогда не определят как корректное любое доказательство с противоположным выводом. Но как он мог в этом убедиться? На этот раз непротиворечивость следовало