Вот почему физики, изучающие элементарные частицы, одержимы симметриями. На фундаментальном уровне симметрии не просто описывают Вселенную; они определяют, что в этой Вселенной возможно, а что нет, то есть формируют саму физику. Тенденция к спонтанному нарушению симметрии, по крайней мере на сегодняшнем уровне развития теории, всегда проявляется одинаково: симметрия, нарушенная на макроскопических масштабах, является ненарушенной на микроскопических. Чем на меньших расстояниях мы исследуем Вселенную, тем более симметричной она выглядит.
Если мы захотим применить к природе человеческие понятия о простоте и красоте, то калибровочные симметрии будут одним из видов проявления такой красоты. Порядок есть симметрия.
Соображения симметрии подвели нас к самым границам наших знаний о мире. Но в последние десятилетия они начали толкать нас далеко за пределы этих границ, провоцируя физиков заниматься выяснением, какие симметрии могли бы объяснить, почему Вселенная является такой, какой мы её наблюдаем, и выдвигать совершенно новые концепции физической реальности.
Частью физиками движет идея соединения электромагнетизма и гравитации, об одной из попыток которого я уже рассказал, упомянув Германа Вейля. Но несмотря на то что обе эти силы возникают из-за локальных симметрии, между ними существует фундаментальное различие. Гравитация имеет отношение к симметрии пространства-времени, в то время как электромагнетизм и другие известные взаимодействия — нет. Сила, которую мы ощущаем как силу тяжести, отражает кривизну пространства-времени, тогда как то, что мы ощущаем как электромагнетизм, — нет.
В 1919 году молодой польский математик Теодор Калуца предположил, что, возможно, помимо четырёх известных пространственных измерений существует ещё одно, и задался вопросом: нельзя ли объяснить электромагнитное взаимодействие искривлением пространства в этом дополнительном ненаблюдаемом измерении?
Удивительно, но ответ оказался положительным. Как показал несколько лет спустя шведский физик Оскар Клейн, пятая координата, которую предложил Калуца, может существовать, будучи «свёрнутой» в очень маленькую окружность, и поэтому не наблюдаться в обычных экспериментах. Тогда искривление в четырёх наблюдаемых измерениях будет наблюдаться в обычном физическом мире как гравитация, а искривление в дополнительном пятом измерении приводить к электромагнитному взаимодействию.
Казалось бы, с таким замечательным результатом Калуца и Клейн должны были затмить своей славой Эйнштейна и Дирака, но оказалось, что их теория, как бы красива она ни была, предсказывала дополнительные виды гравитационного взаимодействия, которые никогда не наблюдались. Тем не менее способ унификации, предложенный Калуцей и Клейном, оставил след в умах теоретиков, и о нём снова вспомнили в конце XX века.
В 1970-х и 1980-х годах стало ясно, что все прочие взаимодействия, так же как и электромагнитное, связаны с калибровочными симметриями, и физики вновь вернулись к поискам Святого Грааля Эйнштейна — идее объединения в одной теории всех фундаментальных взаимодействий, включая и гравитацию.
Для подробного рассказа об этом потребовалась бы целая книга, но я, к счастью, уже написал одну такую, и есть ещё множество других. Достаточно сказать, что в 1984 году физики предложили расширить наши пространство-время не на одно, а, по крайней мере, на шесть дополнительных измерений, и это позволяет объединить все наблюдаемые в природе симметрии, связанные со всеми известными взаимодействиями, в том числе и с гравитацией. В результате появилась возможность создать математически последовательную теорию квантовой гравитации, что до этого момента никому не удавалось. Получившаяся теория стала известна как
Теория струн знала свои взлёты и падения. Первоначальный успех, достигнутый в 1980-х годах, был омрачён осознанием того, что никто не в состоянии создать какой-либо вариант теории струн, который бы однозначно предсказал что-либо подобное нашему реальному физическому миру и что для создания последовательного описания, видимо, нужны более сложные виды математических симметрии, так что, возможно, сами струны могут быть иллюзией, возникающей из более фундаментальных объектов.
На самом деле — и я ещё вернусь к этому в конце книги — не исключено, что неспособность теории струн предсказать что-либо похожее на нашу Вселенную (по мнению некоторых теоретиков) может означать, что попросту не существует никакого фундаментального физического объяснения, почему Вселенная именно такая, а её наблюдаемые свойства являются результатом простого случайного стечения обстоятельств!