Общим свойством калибровочной симметрии является требование существования неких полей, способных действовать на больших расстояниях, которые бы «компенсировали» свободу выбора некоторых свойств частиц или пространства-времени так, чтобы при этом не изменялись основные физические законы. В общей теории относительности таким полем является гравитационное, в электромагнетизме — электромагнитное, которое, в свою очередь, определяется векторными потенциалами. Однако слабое взаимодействие между частицами в атомных ядрах действует только на очень коротких расстояниях. Как же оно может быть связано с калибровочной симметрией?
Решением является
Так вот, спонтанно нарушенные калибровочные симметрии полностью скрыты от нас. Как я уже говорил, фоновый конденсат виртуальных частиц в пустом пространстве приводит к тому, что W- и Z-бозоны обретают массу, а фотоны остаются безмассовыми. Проявление нарушенной калибровочной симметрии заключается в существовании массивных частиц, которые являются переносчиками
Слабость слабого взаимодействия объясняется тем, что связанная с ним калибровочная симметрия спонтанно нарушается. В результате, на масштабах, больших, чем среднее расстояние между частицами в фоновом конденсате, который определяет свойства W- и Z-бозонов, эти бозоны оказываются очень тяжёлыми, что ослабляет переносимое ими взаимодействие. Если в природе существуют другие, ещё не открытые калибровочные симметрии, нарушающиеся на ещё более малых масштабах, то порождаемые ими взаимодействия должны быть ещё более слабыми и короткодействующими, и, возможно, именно по этой причине они до сих пор не открыты. Не исключено, что в природе существует бесконечное количество таких симметрии, а возможно, и нет.
Если так, то возникает следующий актуальный вопрос: все ли взаимодействия в природе должны быть результатом спонтанно нарушенных калибровочных симметрии? Нет ли какой-нибудь иной причины для существования взаимодействий? Мы пока ещё недостаточно хорошо это понимаем. Может быть, такая причина существует, а может быть, и нет.
Дело в том, что все теории, которые не предусматривают калибровочной симметрии, оказываются «больны» внутренней математической несогласованностью. После того как в таких теориях должным образом учитываются все квантово-механические эффекты, оказывается, что теория содержит бесконечное количество физических параметров. Но любая теория с бесконечным количеством параметров — это вовсе не теория! Калибровочная симметрия выступает ограничителем количества переменных, необходимых для описания физики явления, подобно тому как сферическая симметрия выступает ограничителем количества переменных, необходимых для описания коня. Таким образом, для сохранения физического и математического здоровья различных взаимодействий им, в первую очередь, необходимы хорошие калибровочные симметрии.