Этот метод градуировки был подробно изучен и усовершенствован советскими исследователями. Снижение погрешностей, связанных с нелинейностью спектральной характеристики и несоответствием распределения генерированных светом носителей по толщине элемента, возникающему при измерениях, реальному распределению, характерному для условий эксплуатации солнечных элементов, было достигнуто следующими способами: использованием более совершенных неселективных радиометров для измерения монохроматического излучения и светосильных монохроматоров; выбором излучения для подсветки, достаточно точно воспроизводящего солнечный спектр; применением модулятора, обеспечивающего минимальное содержание гармоник высшего порядка. Подсвечивающее излучение создавалось с помощью галогенных ламп с встроенными интерференционными фильтрами, позволяющими в области 0,4–1,1 мкм получить распределение энергии, близкое к солнечному спектру, а при абсолютной градуировке монохроматора применялся специально разработанный полостной термоэлектрический радиометр с обмоткой замещения. Для этой же цели полезно (кроме встроенной электрической обмотки замещения) использовать эталонирование по модели черного тела. Схема установки по измерению спектральной чувствительности, созданной специально для градуировки эталонных солнечных элементов, приведена на рис. 2.16.
Главная отличительная особенность разработанной установки — наличие подсветки лампами-фарами, на отражатель и пропускающее окно которых нанесены многослойные интерференционные фильтры, корректирующие спектр встроенной в фару лампы под солнечный. На поверхности измеряемого элемента создается облученность 1360 Вт/м2, которая контролируется термоэлектрическим радиометром с большим полем зрения. Радиометр имеет точную энергетическую калибровку в широком спектральном интервале. Лампы подсветки получают энергию от высокостабильных источников питания, имеющих низкое содержание высокочастотных гармоник.
Монохроматическое излучение достаточной интенсивности обеспечивается в этой установке дифракционным монохроматором с решеткой 600 линий/мм. Для исключения влияния спектров высших порядков использовалось устройство (переменное гасящее сопротивление, включенное в цепь лампы и связанное с поворотным механизмом дифракционной решетки монохроматора), уменьшающее цветовую температуру тела накала лампы снижением тока при работе в длинноволновой области спектра. Ток короткого замыкания при монохроматическом освещении во время этих измерений определяется при фиксации светового луча на различных участках фотоактивной поверхности эталонного солнечного элемента и затем усредняется по всей рабочей поверхности.
Монохроматический поток, модулированный частотой 900 Гц, направляется на элемент. Взаимное расположение щели монохроматора и модулятора, а также форма окна модулятора выбираются таким образом, чтобы монохроматический модулированный поток был по возможности приближен к синусоидальному. Необходимое условие — измерение в режиме короткого замыкания, в связи с чем переменный сигнал снимается через разделительную емкость, а солнечный элемент шунтируется сопротивлением порядка 0,5 Ом. Высокочастотная составляющая тока короткого замыкания подается на селективный усилитель с калиброванным коэффициентом усиления, напряжение с которого преобразуется в пропорциональный сигнал измерительным преобразователем и регистрируется в цифровой и графической формах. Для использования данных каждого эксперимента в расчетах на ЭВМ информация может быть представлена на перфоленте в стандартном коде.