Читаем Солнечные элементы полностью

<p>Спектральная чувствительность и коэффициент собирания солнечных элементов</p>

Спектральная чувствительность солнечного элемента представляет собой спектральную зависимость его тока короткого замыкания, рассчитанного на единицу энергии падающего оптического излучения.

Для обычных, не прецизионных измерений спектральной чувствительности используется зеркальный монохроматор со стеклянной оптикой. Источником света служит обычно ленточная вольфрамовая лампа накаливания, тело накала которой с помощью зеркального эллиптического отражателя проецируется на входную щель прибора. Стабильность светового потока поддерживается за счет постоянства тока накала лампы, который контролируется амперметром.

Такая лампа дает возможность проводить измерения в видимой и инфракрасной областях спектра (до границы пропускания стекла). При измерениях в ультрафиолетовой области спектра от 0,4 до 0,3 мкм применяется лампа накаливания с увиолевым стеклом, цветовая температура которой 3200 К, а при измерениях в области длин волн менее 0,3 рекомендуется использовать водородную лампу, поскольку она дает сплошной спектр и отличается высокой (по сравнению с другими газоразрядными лампами) стабильностью. Рабочие щели монохроматора, как правило, изменяются от 1 мм для области спектра 0,4–0,5 мкм до 0,25 мм в области длин волн больше 0,9 мкм, с тем чтобы спектральная ширина щели оставалась постоянно в пределах 0,01—0,015 мкм. Изменение длины волны осуществляется небольшим поворотом зеркала, что позволяет выделяемому излучению любой длины волны проходить через призму с минимальным отклонением от первоначального пути.

Для устранения рассеянного света при измерениях спектральной чувствительности в различных областях спектра используются соответствующие светофильтры. За выходной щелью монохроматора помещаются две линзы, с помощью которых расходящийся световой поток может быть распределен по всей поверхности или собран на части солнечного элемента. Этот световой поток на определенном расстоянии от второй линзы проецируется в полоску, полностью попадающую на приемную пластину термоэлемента. Затем солнечный элемент устанавливается на место термоэлемента таким образом, чтобы весь свет, измеренный термоэлементом, вписывался в приемную поверхность солнечного элемента.

Измерения плотности потока монохроматического излучения могут быть осуществлены, например, с помощью вакуумного компенсационного элемента. Термоэлемент включается на вход низкоомного потенциометра. Чувствительность термоэлемента периодически проверяется по эталонным светоизмерительным лампам, отградуированным по цветовой температуре и силе света.

В качестве неселективных могут быть также использованы приемники излучения, основанные на металлических термопарах, пленочных термоэлементах, полупроводниковых термостолбиках. Градуировку этих приемников полезно осуществить несколькими независимыми методами: применяя эталонную лампу; с помощью встроенной обмотки замещения, по которой пропускается определенный ток; используя модель абсолютно черного тела с известной температурой.

При измерениях сначала весь спектр монохроматора от 0,4 до 1,16 мкм градуируется с помощью термоэлемента, а затем на его место устанавливается солнечный элемент, ток короткого замыкания которого измеряется по компенсационной схеме. Установка и снятие исследуемого элемента после каждого изменения длины волны привели бы к значительно большим погрешностям за счет неточности механических перемещений.

В качестве индикатора нуля используется обычно гальванометр, измерительным прибором может служить микроамперметр с шунтом.

Энергия на выходе монохроматора изменяется при измерениях во всем спектральном диапазоне от 0,002 до 0,02 мВт (что соответствует потоку фотонов 1,5×1012 -1×1014 с-1).

Следует отметить, что из-за нелинейности люкс-амперной характеристики многих солнечных элементов при переходе от низких освещенностей, создаваемых монохроматическим светом, к высоким, характерным для солнечного излучения вне атмосферы или в ясные дни в наземных условиях, особенно ответственные прецизионные измерения спектральной чувствительности, например для эталонных солнечных элементов, проводятся на усовершенствованных установках.

В условиях облучения даже однократным солнечным потоком плотность падающего на поверхность элемента потока энергии, составляющая около 100 мВт/см2, на несколько порядков выше плотности потока, создаваемого обычным монохроматором (как правило, от 10 до 20 мкВт/см2). От уровня засветки при измерении спектральной чувствительности зависит, в частности, значение диффузионной длины неосновных носителей заряда Lб в базовом слое, поскольку при увеличении концентрации инжектированных светом носителей значение Lб сначала резко растет, а затем практически не меняется. При низкой освещенности обычно отклонение от линейности связано с рекомбинационными процессами, при сверхвысокой — с потерями генерируемой мощности на сопротивлении растекания.

Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука