Имитаторы Солнца используются в различных областях науки и техники: при моделировании тепловых режимов космических аппаратов и испытании материалов на воздействие космических условий, в медицинских и биологических исследованиях, в растениеводстве, фотометрии, калориметрии, гелиотехнике. Известно множество разнообразных оптических схем и конструкций имитаторов Солнца, и среди них разработаны и успешно используются оригинальные имитаторы для измерения параметров солнечных элементов и батарей.
В идеальном случае имитаторы должны с наилучшим приближением воспроизводить все параметры солнечного излучения — параллельность лучей, стабильность во времени и равномерность освещения, спектральный состав, плотность потока. Однако такие приборы чрезвычайно сложны и дороги, параметры их светового потока все же отличаются от естественного солнечного, поэтому в зависимости от конкретного назначения создаются специализированные имитаторы. В установках, предназначенных для измерения характеристик солнечных элементов и батарей, меньше внимания уделяется достижению коллимации пучка для получения параллельности лучей, соответствующей солнечному потоку, и больше — созданию достаточно хорошего приближения к спектру излучения Солнца, обеспечению стабильности и однородности потока. Но и здесь подход может быть разным. В производстве при серийном изготовлении солнечных элементов применение имитаторов с точным воспроизведением спектра не всегда обязательно, особенно для относительных измерений, например, таких, как текущий контроль качества, сортировки элементов и их групп по электрическим параметрам, чтобы обеспечить малые потери на коммутацию после сборки батареи. Для этих целей можно подобрать имитатор с оптимальным соотношением между сложностью конструкции и точностью измерений.
Наиболее прост, удобен для использования в производственных условиях и стабилен имитатор, состоящий из вольфрамовых ламп накаливания с зеркальными или матовыми отражателями, соответствующий набор которых может обеспечить освещение солнечных элементов для батарей практически любой площади.
Значительная часть инфракрасного излучения ламп накаливания (вызывающего перегрев солнечных элементов при измерениях) может быть устранена с помощью установленных между лампами и элементами теплоотражающих фильтров из стеклянных пластин с прозрачными проводящими пленками на основе оксидов олова и индия или станнатов кадмия с поверхностным слоевым сопротивлением менее 50 Om∕□ (пленка должна находиться на стеклянной пластине со стороны лампы).
Еще большего уменьшения инфракрасной составляющей излучения ламп можно добиться введением теплопоглощающего фильтра, образуемого слоем воды толщиной 2–4 см. Для охлаждения самого водяного фильтра может быть использован внешний радиатор или проточная вода, а для удаления из перегретой воды пузырьков воздуха фильтр снабжается механическими щетками.
Подобные простые имитаторы с водяным фильтром могут быть использованы для экспрессного контроля качества солнечных элементов и их групп (размерами до 20×30 см) на всех стадиях процессов изготовления, а без водяного фильтра — для контроля качества солнечных батарей.
Спектр ламп накаливания, применяемых для контроля качества солнечных батарей большой площади, может быть значительно исправлен и приближен к солнечному нанесением на внутреннюю поверхность колбы лампы (как перед вольфрамовой нитью накала, так и сзади нее) многослойных интерференционных светофильтров. Колба лампы предохраняет светофильтры от неблагоприятного воздействия внешней окружающей среды (в частности, повышенной влажности), а последствий термического воздействия излучения вольфрама, приводящего к кристаллизации слоев многослойного светофильтра и последующему отслаиванию его от стекла, удается избежать, как показал в своих исследованиях А. С. Иванцев (Всесоюзный институт источников света, г. Саранск), если ввести между диэлектрическими слоями светофильтра и стеклом тонкую полупрозрачную пленку хрома, нанесенную при большой скорости конденсации в глубоком вакууме. Осаждение постепенно испаряющегося слоя вольфрама на стекло и светофильтры также можно предотвратить, используя лампу-фару с нанесенными на ее колбу светофильтрами, внутрь которой встроена малогабаритная, но достаточно мощная вольфрамовая лампа в кварцевой оболочке. Из таких ламп-фар может быть собран имитатор Солнца для измерения параметров солнечных батарей любой площади.