Читаем Солнечные элементы полностью

Улучшение спектральной чувствительности в длинноволновой области может быть достигнуто за счет увеличения времени жизни неосновных носителей в базовом слое, например, путем перехода к более чистому и высокоомному исходному полупроводниковому материалу и сохранения его свойств в процессе изготовления солнечных элементов.

На основе кремния могут быть изготовлены солнечные элементы с очень высокой чувствительностью в коротковолновой и ультрафиолетовой областях спектра вплоть до 0,2 мкм. C этой целью необходимо резко уменьшить скорость поверхностной рекомбинации и глубину залегания p-n-перехода.

Таким образом, изучение спектральной чувствительности и коэффициента собирания солнечных элементов исключительно полезно для дальнейшего улучшения свойств солнечных элементов, увеличения их КПД и, следовательно, расширения сферы их применения.

<p>Глава 3</p><p>КОЭФФИЦИЕНТ ПОЛЕЗНОГО ДЕЙСТВИЯ</p><p>СОЛНЕЧНЫХ ЭЛЕМЕНТОВ</p><empty-line></empty-line><p>Методика измерения КПД</p>

Для определения КПД солнечных элементов и батарей необходимо (так же как в случае любых других преобразователей излучения) измерить количество энергии излучения, поступающей на солнечный элемент, и количество электроэнергии, выработанной им. Проблема, однако, осложняется несколькими обстоятельствами: энергия поступает к элементу в форме солнечного излучения, спектральный состав и мощность которого продолжают уточняться даже для внеатмосферных условий, а характеристики наземного солнечного излучения чрезвычайно сильно зависят от состояния атмосферы и часто изменяются в течение весьма непродолжительных периодов времени;

создание имитаторов Солнца, копирующих по всем основным параметрам внеатмосферное или выбранное в качестве стандарта наземное солнечное излучение, представляет собой пока не решенную полностью научно-техническую задачу;

при разработке стабильных эталонных солнечных элементов для настройки имитаторов Солнца следует учитывать особенности оптических и электрофизических свойств каждого типа элементов, в частности их спектральной чувствительности;

при измерении выходных электрических параметров элементов и батарей необходимо иметь в виду сильное влияние последовательного сопротивления элементов и сопротивления измерительных приборов на получаемые значения.

Таким образом, определение КПД солнечных элементов и батарей представляет собой сложную комплексную проблему, и это выделило метрологию полупроводниковых преобразователей солнечного излучения в самостоятельной раздел исследований по фотоэлектричеству.

Основной параметр солнечных элементов и батареи — световая нагрузочная вольт-амперная характеристика — позволяет определить генерируемую электрическую мощность по произведению IoptUoht, оценить полноту использования потенциала запрещенной зоны по напряжению холостого хода; получить представление об уровне оптических и фотоэлектрических потерь по току короткого замыкания и коэффициенту заполнения вольт-амперной характеристики; рассчитать КПД преобразования солнечной энергии в электрическую по отношению мощности, генерируемой элементами и батареями, к мощности падающего солнечного излучения, которую можно измерить с помощью отградуированного эталонного солнечного элемента. Градуировка эталонного элемента заключается в определении абсолютного значения тока его короткого замыкания, например путем пересчета измерений абсолютной спектральной чувствительности на стандартный внеатмосферный или наземный солнечный спектр.

Качество солнечных элементов и батарей, количество дефектных элементов в батарее могут быть оценены также косвенными методами — по измерению прямой и обратной ветвей темновой вольт-амперной характеристики; по интегральному коэффициенту поглощения солнечного излучения поверхностью батареи, рассчитываемому исходя из результатов измерений спектральных коэффициентов отражения; по интегральному коэффициенту собственного теплового излучения поверхности батарей, различному у дефектных и высококачественных элементов; по яркости электролюминесценции (у солнечных элементов на основе арсенида галлия).

Измерения параметров солнечных элементов и батарей могут быть выполнены в лабораторных, натурных наземных и космических условиях по указанным выше методикам.

Рассмотрим ряд научно-технических вопросов, связанных с проблемой контроля качества, определения параметров солнечных элементов и батарей из различных полупроводниковых материалов и разнообразного практического применения, погрешностей измерения и прогнозирования характеристик элементов в процессе эксплуатации.

<p>Имитаторы солнечного излучения</p>
Перейти на страницу:

Похожие книги

Эволюция Вселенной и происхождение жизни
Эволюция Вселенной и происхождение жизни

Сэр Исаак Ньютон сказал по поводу открытий знаменитую фразу: «Если я видел дальше других, то потому, что стоял на плечах гигантов».«Эволюция Вселенной и происхождение жизни — описывает восхождение на эти метафорические плечи, проделанное величайшими учеными, а также увлекательные детали биографии этих мыслителей. Впервые с помощью одной книги читатель может совершить путешествие по истории Вселенной, какой она представлялась на всем пути познания ее природы человеком. Эта книга охватывает всю науку о нашем происхождении — от субатомных частиц к белковым цепочкам, формирующим жизнь, и далее, расширяя масштаб до Вселенной в целом.«Эволюция Вселенной и происхождение жизни» включает в себя широкий диапазон знаний — от астрономии и физики до химии и биологии. Богатый иллюстративный материал облегчает понимание как фундаментальных, так и современных научных концепций. Текст не перегружен терминами и формулами и прекрасно подходит для всех интересующихся наукой и се историей.

Пекка Теерикор , Пекка Теерикорпи

Научная литература / Физика / Биология / Прочая научная литература / Образование и наука