Читаем SETI: Поиск Внеземного Разума полностью

С другой стороны, при N = 1, 2 сила взаимодействия падает с расстоянием слишком медленно. Поэтому какую бы скорость ни придать заряду, он не сможет уйти из поля притяжения центрального тела, он как бы находится в глубокой (бесконечно глубокой) потенциальной яме, и чтобы извлечь его оттуда, надо затратить бесконечно большую энергию. Следовательно, в таком пространстве не существовало бы свободного движения тяготеющих масс, и в его («одномерных» или «двумерных») атомах не могли бы происходить процессы ионизации. В таком мире не существовали бы процессы возникновения и распада, процессы обмена, характерные для жизни. Только в трехмерном мире возможно возникновение сложных молекулярных структур, обладающих способностью к обмену, изменчивости, эволюции.

Понятно теперь, почему мы живем в трехмерном мире: в другом мире мы просто не могли бы существовать. Это относится не только к человеку, но и к любому разумному существу с телом, представляющим собой сложную структуру, построенную из атомов.

Следующий шаг в исследовании отношения «человек-Вселенная» связан с фундаментальными физическими константами.

<p>3.4. Кто задает физические постоянные?</p>

Что меня действительно глубоко интересует, так это — мог ли Бог создать мир иным?

А. Эйнштейн

Природа материального мира, его важнейшие свойства в значительной мере определяются фундаментальными физическими постоянными. К ним прежде всего относятся: массы важнейших элементарных частиц протона, нейтрона и электрона: mp , mn , mе , заряд электрона е и фундаментальные физические константы: постоянная тяготения G, постоянная Планка h (или ħ = h/2π), скорость света с, постоянная слабого взаимодействия gw . Значения этих констант зависят от выбранной системы единиц измерения. Наряду с ними используются безразмерные константы четырех физических взаимодействий:

 

Значения констант получены из эксперимента. Но почему они именно такие?

В романе «Черное облако» известный английский астрофизик Ф. Хойл описал сообщество высокоразвитых Космических Разумов, которые познали все законы природы. Единственная проблема, которую им остается решить — кто задает фундаментальные постоянные? Но как только кто-либо из членов сообщества приближается к разгадке этой тайны — он бесследно исчезает. Современные космологи также отважились взяться за эту проблему. Прежде всего им необходимо было ответить, почему константы имеют те самые значения, которые известны нам из опыта. Подход, который использовался при решении этой проблемы, вполне соответствовал обычной процедуре, принятой в физике: если нас интересуют значения каких-то параметров, попробуем проварьировать эти значения и посмотрим, как изменятся при этом условия в изучаемой системе. Этот естественный и вполне разумный подход, применительно к фундаментальным константам, привел к совершенно неожиданным результатам.

Ну казалось бы, что может произойти, если мы немного изменим массу электрона? Соответственно изменится размер атомов, а значит, и размер окружающих нас тел. Но если изменения массы электрона невелики, то и размер тел должен измениться незначительно. Вот вроде и все! Или, что будет, если изменить значение постоянной тяготения G? Очевидно, для двух данных тел изменится сила тяготения между ними. От величины тяготения зависит эволюция Вселенной и эволюция отдельных небесных тел. Значит, изменятся и эти тела, изменятся, в частности, их размеры. Но опять-таки, кажется, что если изменения постоянной тяготения будут невелики, то и свойства тел изменятся немного. Никаких глубоких качественных изменений во Вселенной при незначительной вариации констант вроде бы не должно произойти. Оказалось, что подобное заключение совершенно неверно. Незначительные вариации физических констант на самом деле ведут не к малым изменениям свойств небесных тел, а к радикальным качественным изменениям свойств Вселенной в целом. Причем эти изменения таковы, что они исключают возможность существования жизни во Вселенной. Рассмотрим несколько примеров.

Перейти на страницу:

Похожие книги

100 великих научных открытий
100 великих научных открытий

Астрономия, физика, математика, химия, биология и медицина — 100 открытий, которые стали научными прорывами и изменили нашу жизнь. Патенты и изобретения — по-настоящему эпохальные научные перевороты. Величайшие медицинские открытия — пенициллин и инсулин, группы крови и резусфактор, ДНК и РНК. Фотосинтез, периодический закон химических элементов и другие биологические процессы. Открытия в физике — атмосферное давление, инфракрасное излучение и ультрафиолет. Астрономические знания о магнитном поле земли и законе всемирного тяготения, теории Большого взрыва и озоновых дырах. Математическая теорема Пифагора, неевклидова геометрия, иррациональные числа и другие самые невероятные научные открытия за всю историю человечества!

Дмитрий Самин , Коллектив авторов

Астрономия и Космос / Энциклопедии / Прочая научная литература / Образование и наука
Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука