Читаем Секреты числа пи [Почему неразрешима задача о квадратуре круга] (Мир математики. т.7.) полностью

«Контакт» — это фильм о возможности общения с внеземными цивилизациями и о проблемах, в том числе религиозных, которые могут возникнуть вследствие такого контакта. В фильме рассказывается история доктора Эрроуэй, которая с помощью радиотелескопа улавливает сигнал из космоса, строит генератор «кротовых нор» для путешествия по Вселенной и встречается с инопланетянами. Инопланетяне сообщают Элеонор, что среди знаков π, возможно, скрыто некое послание. Расшифровать это таинственное сообщение не под силу даже им, потому что шифр знает лишь Бог, создатель Вселенной.

Инопланетяне предполагают, что сообщение зашифровано с помощью знаков π: начиная с определенной позиции, знаки π перестают изменяться случайно и образуют последовательность из нулей и единиц. Если расположить эти цифры в форме квадрата, единицы и нули образуют идеальную окружность, вписанную в этот квадрат. Этот шифр — часть π, часть самой природы. Значит ли это, что он помещен туда Богом? В последней главе мы вернемся к этому фильму и обсудим возможность существования подобного квадрата и круга, образованного знаками π.

В романе британского автора Дугласа Адамса «Автостопом по галактике», классике современной юмористической литературы, огромный компьютер сообщает людям ответ на главный вопрос жизни и Вселенной. Удивительно, но ответ на этот вопрос — «42». Некоторые фанаты числа π восприняли ответ компьютера слишком серьезно и начали поиски. Они отвергли число 42 как слишком простое и начали искать среди знаков π последовательности вида 424 242 с помощью поискового механизма The Pi Searcher. Эта последовательность встречается в записи π, начиная с 242 423-й позиции. Нет никаких сомнений, что энтузиасты продолжат свои поиски.

Число π и законы

Немного странно упоминать здесь о столь далекой от π области знаний, как право и законодательство, но это число встречается и здесь. В 1836 году в послереволюционной Франции жил некий ученый Лакомм, который не только считал π равным 3,25, но, что удивительно, был награжден многими авторитетными учреждениями за свои открытия, связанные с этим числом. Напомним, что на тот момент было точно вычислено уже более сотни знаков π.

Наиболее известный законодательный курьез, связанный с π, произошел в Индиане, США. В 1897 году некий Эдвард Гудвин, весьма искушенный в геометрии, опубликовал в серьезном журнале American Mathematical Monthly короткую статью и убедил законодательные органы штата обсудить текст нового закона (билль № 246), который затем должен был поступить на рассмотрение в палату представителей. Казалось бы, в этом нет ничего необычного. Но в случае принятия этого закона значение числа π считалось бы равным

π = 16∙√2/7 = 3,232

что подтверждали сложные и объемные расчеты. Закон также требовал включить это значение π в официальные учебники, а в случаях использования «истинного» значения π (иными словами, прежнего, общеизвестного значения) необходимо было уплатить Гудвину авторские отчисления. Гудвин и законодательные органы не приняли во внимание, что за 30 лет до этих событий Линдеман доказал трансцендентность числа π и невозможность решения задачи о квадратуре круга. Они также проигнорировали все прочие расчеты и известные на тот момент более 100 точных знаков π. Высокопоставленных лиц Индианы это ничуть не интересовало.

Проект закона был одобрен несколькими комиссиями нижней палаты парламента и был передан в сенат с положительной рекомендацией. К счастью, пусть и по воле случая, этот закон так и не был принят. Кто-то показал текст закона специалисту, который случайно проходил мимо, — профессору математики Кларенсу Авиафару Уолдо (1852-1926), чтобы тот написал предисловие к тексту закона. Тот вежливо отказался, сказав, что его несколько утомили искатели квадратуры круга.

Внимательно прочитав текст закона, он пришел в ужас и незамедлительно рассказал сенаторам об истинном положении вещей. В итоге благодаря усилиям Кларенса Уолдо члены сената поняли всю абсурдность закона, и знаменитый билль № 246 не был утвержден.

Профессор математики Кларенс Авиафар Уолдо.

Он помешал тому, чтобы впервые в истории полная бессмыслица с точки зрения науки была возведена в ранг закона.

Число  π искусство

Число π увековечено на фризе Дворца открытий в Париже, что как нельзя лучше соответствует духу этого места. На фризе высечено более 600 знаков, рассчитанных Уильямом Шэнксом в 1873 году. На самом деле этот английский математик вычислил 707 знаков, но Дэниел Фергюсон в 1944 году обнаружил в его расчетах ошибку, начиная с 528 знака. По этому случаю Николас Роуз написал такие стихи:

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное