Читаем Секреты числа пи [Почему неразрешима задача о квадратуре круга] (Мир математики. т.7.) полностью

Если читателя интересуют произведения на других языках, он с легкостью найдет их в Интернете. Последний совет: главное при запоминании подобных стихов — не сбиваться со счета. Одного из пионеров применения ядерной физики к вопросам эволюции звезд, физика Георгия Гамова, известного также под именем Джордж Гамов, как-то упрекнули в журнале Scientific American, что он ошибочно привел значение π = 3,14158 вместо 3,14159. Оказалось, что Гамов, американский физик русского происхождения и полиглот, неверно запомнил французскую фразу Que j’aime a faire apprendre для запоминания π, забыв одну букву «р» в слове apprendre.

Особое место среди стихов занимают японские трехстишия хайку. Сейчас они написаны на многих языках и на многие темы, не стало исключением и число π. Хотя существуют хайку о числе π, высшим мастерством считается умение написать пику — математический вариант хайку. Классические хайку — трехстишия со структурой слогов 5-7-5 (первая строка состоит из 5 слогов, вторая — из 7, третья — снова из 5). Пику также является трехстишием, но в нем есть дополнительное условие: число букв в словах должно совпадать с соответствующим знаком π.

Предлагаем читателю пример пику на английском языке:

Can I know a cycle, according to nature round, and never complete?(Могу ли я знать цикл, круглый по своей природе и при этом бесконечный?)

Некоторые авторы используют уже известные стихотворения и специальную систему кодов. Среди них особо выделяется Майк Кейт, фанат числа π, который создал единственную в своем роде версию стихотворения «Ворон» Эдгара Аллана По. Она носит название Near a raven («Около ворона»). Но и это еще не все: тот же Майк Кейт написал рассказ Cadaeic cadenza, в который включил свое же стихотворение, а также фрагменты произведений Льюиса Кэррола, Омара Хайяма, Уильяма Шекспира и других авторов. В Cadaeic cadenza зашифрованы 3834 знака π, что кажется феноменальным, если не сказать невозможным. В самом названии также зашифрованы знаки π (обратите внимание на порядковые номера букв в английском алфавите):

С a d а е i с

3, 1 4 1 5 9 3

Интерес также вызывает способность некоторых людей запоминать бесчисленное множество знаков π, используя для этого подобные стихотворения или другие приемы. Неудивительно, что многие любители таких упражнений, настоящие спортсмены, обладающие безграничной памятью, попали на страницы Книги рекордов Гиннесса.

Рекорды по запоминанию π быстро сменяют друг друга, каждый участник стремится во что бы то ни стало побить прошлое достижение. Иногда также учитывается не только количество верно названных знаков, но и скорость, с которой рекордсмен может их воспроизвести. Но не будем углубляться в тонкости. Если говорить об абсолютном рекорде по числу запомненных знаков, то он принадлежит украинцу Андрею Слюсарчуку, который запомнил 30 миллионов цифр. Это достижение выглядит столь невероятным, что даже в Книге рекордов Гиннеса оно не было отмечено как мировой рекорд.

Официально утвержденный рекорд был установлен в 2006 г. и принадлежит японцу Акире Харагучи, который запомнил сто тысяч знаков. Не следует полагать, что эти рекорды устанавливают лишь фанатики числа π: в списке рекордсменов фигурируют и всемирно известные ученые, например американец Александр Айкен или канадец Саймон Плуфф.

Пи-музыка

В музыке число π встречается не столь широко, несмотря на традиционную близость музыки и математики. Вспомним, что в повсеместно применяемом равномерно темперированном строе каждая октава делится на математически равные интервалы с соотношением частот 12√2. Диатоническая гамма, сформулированная еще в древности, представляется в виде так называемых квинт с соотношением частот 3:2. Мы приводим эти технические моменты в качестве введения к последующим объяснениям.

Натуральный строй

Современный музыкальный строй берет начало еще во времена Пифагора. В его основе лежат ноты так называемой диатонической системы (до, ре, ми, фа, соль, ля, си). В пифагорейском строе ноты соответствовали частоте вибрации струны. Грубо говоря, разным частотам соответствовали разные ноты. Различие между вибрациями (нотами) измерялось в интервалах. Интервалы получаются не вычитанием одной частоты из другой, как можно было бы думать, а их делением. Результат деления двух частот выражался в виде простой дроби. Например, квинта — интервал шириной в пять ступеней — означает результат деления частоты данной ноты на частоту ноты, отстоящей от нее на пять ступеней, и равен 3/2. Интервал октавы охватывает восемь ступеней диатонического ряда, например от «ре» до следующего «ре». Соотношение частот между звуками равно 2/1 = 2.

Перейти на страницу:

Все книги серии Мир математики

Математики, шпионы и хакеры
Математики, шпионы и хакеры

Если бы историю человечества можно было представить в виде шпионского романа, то главными героями этого произведения, несомненно, стали бы криптографы и криптоаналитики. Первые — специалисты, виртуозно владеющие искусством кодирования сообщений. Вторые — гении взлома и дешифровки, на компьютерном сленге именуемые хакерами. История соперничества криптографов и криптоаналитиков стара как мир.Эволюционируя вместе с развитием высоких технологий, ремесло шифрования достигло в XXI веке самой дальней границы современной науки — квантовой механики. И хотя объектом кодирования обычно является текст, инструментом работы кодировщиков была и остается математика.Эта книга — попытка рассказать читателю историю шифрования через призму развития математической мысли.

Жуан Гомес

Математика / Образование и наука
Когда прямые искривляются
Когда прямые искривляются

Многие из нас слышали о том, что современная наука уже довольно давно поставила под сомнение основные постулаты евклидовой геометрии. Но какие именно теории пришли на смену классической доктрине? На ум приходит разве что популярная теория относительности Эйнштейна. На самом деле таких революционных идей и гипотез гораздо больше. Пространство Минковского, гиперболическая геометрия Лобачевского и Бойяи, эллиптическая геометрия Римана и другие любопытные способы описания окружающего нас мира относятся к группе так называемых неевклидовых геометрий. Каким образом пересекаются параллельные прямые? В каком случае сумма внутренних углов треугольника может составить больше 180°? Ответы на эти и многие другие вопросы вы найдете в данной книге.

Жуан Гомес

Математика / Образование и наука

Похожие книги

История математики. От счетных палочек до бессчетных вселенных
История математики. От счетных палочек до бессчетных вселенных

Эта книга, по словам самого автора, — «путешествие во времени от вавилонских "шестидесятников" до фракталов и размытой логики». Таких «от… и до…» в «Истории математики» много. От загадочных счетных палочек первобытных людей до первого «калькулятора» — абака. От древневавилонской системы счисления до первых практических карт. От древнегреческих астрономов до живописцев Средневековья. От иллюстрированных средневековых трактатов до «математического» сюрреализма двадцатого века…Но книга рассказывает не только об истории науки. Читатель узнает немало интересного о взлетах и падениях древних цивилизаций, о современной астрономии, об искусстве шифрования и уловках взломщиков кодов, о военной стратегии, навигации и, конечно же, о современном искусстве, непременно включающем в себя компьютерную графику и непостижимые фрактальные узоры.

Ричард Манкевич

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Математика / Научпоп / Образование и наука / Документальное