Выражения в скобках описывают протяжённости проекций отрезка на соответствующие координатные оси. При наличии некоторой плоскости, расположенной в пространстве, можно задать одинаковые приращения по осям, но в различных направлениях. Если имеются отклонения от эвклидовой поверхности, то длина s окажется разной и зависящей от ориентации просмотра. В результате можно обнаружить изгиб плоскости, её выпуклость, свёртку в цилиндр или местный прогиб. И если всё это проделать, то становится скучно и не предвидится никакого почёта–удовлетворения от рутинной работы. Ясное дело: надо онаучнить! Для этого формулу (1) перепишем для случая многих измерений, пронумеруем с'aми измерения нижним индексом при переменных величинах, вместо школьного знака плюс водрузим могучий символ суммы , введём нормирующие коэффициенты, продифференцируем по переменным и оповестим дотошных читателей, что порядок индексов можно менять. Не важно при этом, что случай пространства более, чем трёхмерного, не рассматривается в силу его отсутствия в мировоззрении Б. Римана, что коэффициенты взяты с потолка, что геометрия такого многообразия ясна и без резиновых преобразований, т. к. все формульные выкрутасы протекают в трёхмерье, но зато сколько тумана вылито в невинную повседневность. После такого грима и припудривания красивая формула (1) принимает бесполый вид 18
ds2 = gji(s) dxj dxj, (2)
где ds, dxj, dxj — дифференциалы пути и координат, gji(s) — коэффициенты, якобы что–то учитывающие, но что именно не указывается, индексы j, i, изменяющиеся от единицы до какого–то неопределённого n. Соотношение (2) Б. Риман обнародовал в 1854 г., т. е. в свои 28 лет. Если даже он приступил к обдумыванию в 20 лет, то на вывод самой формулы ушло восемь лет. Для кого она написана? Математикам она не интересна в силу тривиальности. Ведь и без неё ясно, что путь определяется, как ранее было сказано по поводу выражения (1), приращением функции в точке анализа, т. е. её дифференциалом. Если это приращение не полностью входит в итоговую сумму, то, само собой разумеется, обязан быть весовой сомножитель в виде gji(s). При процессуальной очевидности данная формула не имеет общего решения. Тогда какой же смысл её обобщённого написания? Только для того, чтобы исходя из фантазёрских представлений поведать миру, что где–то в дебрях символов скрыта сфера Римана, псевдосфера Римана, поверхность положительной или отрицательной кривизны, или иные изогнутые плоскости? Так и без формулы понятно: возьмём лист бумаги и станем его скручивать, сминать, выпучивать … Получим беспредельное число неэвклидовых поверхностей. Можно ли хотя бы к простейшей из них подступиться с аршином в виде формулы (2)? Если даже кому–то придётся решать такую задачу, то наверняка он обратится к уравнению (1), имеющему практический смысл. Риман похоже и сам понимал театральность своей формулы, потому посоветовал применять её к описанию многопараметрических процессов, например, диффузионных сред, неоднородных масс и т. д. Для этого коэффициенты gji(s) следует представить в виде функций текущих переменных. И осознавая, что тогда уравнение (2) и подавно нельзя будет решить, он тем не менее, предлагает взамен решения тензор с ковариантными индексами. Современная математика не в состоянии найти общее решение даже простейшего уравнения пятого порядка с постоянными коэффициентами. Какой же резон доводить выкладки до функционального тензора? Если бы пришлось инженеру или любому другому представителю прикладных направлений воспользоваться трудами Римана по выводу формулы (2), ему понадобился бы талант Римана и восемь лет труда. Тогда зачем и для кого работают виртуозы формульных миражей?