Ваша компания подверглась хакерской атаке, в результате которой 1 % ноутбуков оказались заражены вирусом. Положительный результат теста на наличие вируса – это событие +, отрицательный результат – событие —, инфицирование вирусом – событие В. Вам была предоставлена следующая информация:
Мы хотели определить вероятность того, что компьютер заражен вирусом, при условии положительного результата теста,
Вероятности
Теорема Байеса, сформулированная в XVIII веке, – это способ работы с условными вероятностями, который применяется повсюду, начиная с планирования сражений и управления финансами и заканчивая расшифровкой ДНК[55]. Для двух событий
Пусть вас не пугает эта формула. Самое важное – не запомнить ту или иную формулу, а понять, что она делает и почему о ней стоит знать.
Теорема Байеса позволяет связать условную вероятность двух событий. Вероятность наступления события
Это может пригодиться, когда вам известна одна из условных вероятностей и вы хотите определить другую. Например:
– Медицинские исследователи хотят знать вероятность того, что у человека будет положительный результат скринингового теста на рак при условии, что этот человек болен раком,
– Прокуроры хотят знать вероятность того, что подсудимый виновен при условии наличия доказательств,
– Ваш поставщик услуг электронной почты хочет знать вероятность того, что электронное письмо – спам при условии, что оно содержит фразу «Бесплатные деньги!»,
– В вышеописанном мысленном упражнении вы хотите узнать вероятность наличия вируса на вашем компьютере при условии положительного теста,
Все условные вероятности в этих примерах связаны теоремой Байеса. Это хорошая новость. Плохая новость – некоторые части этой теоремы трудно рассчитать. Дело в том, что не все вероятности легко выяснить. Например, вероятность того, что человек болен раком при условии положительного результата скринингового теста, может быть легче узнать, чем вероятность наличия этого заболевания у человека с отрицательным результатом теста.
Чтобы определить, достаточно ли у вас информации для применения теоремы Байеса, можно построить древовидную диаграмму (рис. 6.2). В качестве примера мы используем то же самое мысленное упражнение – и наконец покажем, почему правильный ответ составляет 50 %. Предположим, что в компании 10 000 ноутбуков. Поскольку вероятность положительного результата теста при наличии вируса на ноутбуке составляет 99 %, мы предполагаем, что при тестировании 1 % ноутбуков с вирусом мы будем получать отрицательный результат теста,