Помните, что вероятность одновременного наступления двух событий определяется правилом умножения. Вероятность того, что Сэм живет в Огайо и работает дата-сайентистом (Д), можно обозначить как
Все еще сложно? Вы могли прочитать ответ № 2 как условную вероятность: какова вероятность того, что Сэм живет в Огайо при условии, что он работает дата-сайентистом,
Рассмотрим более простой пример. Бейсбольная команда «Нью-Йорк Янкис» имеет преданных поклонников по всему миру. Предположим, что прямо сейчас проходит матч, который смотрят миллионы людей как вживую на стадионе, так и по телевизору. Теперь случайным образом выберите одного жителя планеты. Учитывая, что в мире живут миллиарды людей, крайне маловероятно, что вы выберете фаната «Янкис». Еще менее вероятен выбор фаната «Янкис», смотрящего игру на стадионе, потому что не все фанаты могут там присутствовать. Однако если бы у вас была возможность случайным образом выбрать человека, присутствующего на стадионе, все было бы иначе. Весьма вероятно, что он оказался бы фанатом «Янкис»[50].
Таким образом, вероятность того, что тот или иной человек – фанат «Янкис» и присутствует на игре, сильно отличается от вероятности того, что человек является фанатом «Янкис» при условии, что он присутствует на игре.
После выполнения этого мысленного упражнения имеет смысл вспомнить о предупреждении, которое было сделано в начале этой главы: будьте внимательны и помните о том, что ваша интуиция может сыграть с вами злую шутку. Вероятности регулярно будут запутывать и сбивать вас с толку. Возможно, лучшее, что мы можем сделать для борьбы с этой проблемой, – это узнать о самых распространенных ловушках.
Теперь, когда вы познакомились с обозначениями и правилами теории вероятностей, пришло время научиться осознавать и критически осмыслять вероятности, с которыми вам предстоит столкнуться в ходе своей работы. Вот несколько советов, которые помогут вам не сбиться с пути:
– Будьте осторожны, делая предположения о независимости событий.
– Знайте, что все вероятности условны.
– Убедитесь в том, что вероятности имеют смысл.
Будьте осторожны, делая предположения о независимости событий
Если события не зависят друг от друга, вы можете перемножить вероятности их наступления. Например, вероятность выпадения двух орлов подряд при подбрасывании честной монеты составляет
Мы уже упоминали об этом в начале книги в связи с ипотечным кризисом 2008 года. Вероятность того, что человек перестанет платить ипотеку, не является независимой от вероятности того, что его сосед тоже перестанет ее платить, хотя финансисты с Уолл-стрит на протяжении многих лет думали иначе. И то и другое событие неразрывно связано с общим состоянием экономики и мира в целом.
Тем не менее допущение независимости событий, которые таковыми не являются, – весьма распространенная ошибка. Руководство вашей компании может допустить ее при принятии стратегических решений – и, как следствие, сильно недооценить вероятность одновременного наступления нескольких событий.
Представьте заседание совета директоров. Обсуждается вероятность того, что в будущем году компании удастся реализовать три интересных, но рискованных проекта:
Кто-то берет калькулятор и перемножает вероятности: 50 % × 25 % × 10 % = 1,25 %. Руководители в восторге: вероятность того, что все три проекта потерпят неудачу, составляет всего 1,25 %. В конце концов, ставки высоки, так что всего один успешный проект способен окупить инвестиции, сделанные во все три. А поскольку суммарная вероятность должна быть равна 1, вероятность успеха хотя бы одного проекта составляет 1 минус вероятность провала всех проектов, или 1–0,0125 = 0,9875 = 98,75 %. «Ничего себе, – думают они, – вероятность общего успеха составляет почти 99 %!»