Рассмотрите те прямые, которые проходят через точки p c SG(p, 1) = 0. Нужно изучить прямые p - k, k, где меняется от 1, т. е. те, которые параллельны биссектрисе второго и четвертого координатного угла и проходят через точку p - 1, 1.
Мы представили отрезок такой прямой для p = 28 (см. рис. 38). Он пересекает точку с нулевым значением на вертикали 21 = 28 - 7. Значит, нужно ограничить число k шестью, задавая g = 3 при p = 28.
Для p = 34 диагональ, проходящая через 33, 1 проходит над всеми отрезками с 0 для p /= 0 и пройдет поэтому, пересекая ось q при q = 34. Поэтому нужно ограничить число k тридцатью тремя и, следовательно, взять g = 33 : 2 = 16.
У вас есть также некоторое число таких pi, что диагональ, выходящая из pi - 1, 1, не пересекает никакого отрезка нулей перед осью q, что дает gi = (pi - 1) : 2.
Исходя отсюда, следующие числа p определяются диагоналями, которые перерезают вертикальный отрезок, выходящий из pi так, что p - pi = gi = (pi - 1) : 2. Тогда можно восстановить первоначальную последовательность, несущую нули, вплоть до (pi - 1) : 2.
Теперь вы легко сможете доказать, что интересующая нас последовательность pi есть последовательность чисел Фибоначчи.
Составьте программу, перечисляющую pi, gi.
6. Комбинаторные задачи
Головоломка 20. Полное решение.
Поскольку эта задача всюду решена, предложим также и здесь решение: это избавит вас от поисков других решений; и, кроме того, я буду уверен, что вы посмотрели на все существенные места этой задачи. Есть книги, которые… Но это — совсем другая история.
Заметим сначала, что два ферзя не могут находиться на одной строке (горизонтали) и, поскольку нужно поставить 8 ферзей на 8 строк, то на каждой строке есть ферзь. Поэтому я буду говорить «ферзь k» вместо «ферзь, стоящий на строке k».
Точно также, есть только один ферзь в каждом столбце. Но совершенно ясно, что я не могу управлять в одно и то же время размещением и по строкам и по столбцам — собственно, это от меня в задаче и требуется. Я собираюсь поэтому размещать ферзей на последовательных строках, начиная сверху.
Чтобы начать, я помещаю ферзя в первый столбец на первой строке. Тогда мне остается решить меньшую задачу; разместить 7 ферзей на 7 последних строках шахматной доски, учитывая, что ферзь стоит на первом поле первой строки. Я получу тогда все решения с ферзем 1 в столбце 1. Затем я поставлю ферзя 1 в столбец 2 и разрешу задачу с 7 ферзями, и т. д. — 8 раз.
Обобщим. Мы собираемся решить частную, но нужную задачу: полагая, что уже есть ферзи, правильно размещенные на строках от 1 до k - 1, и зная их положение, найти все возможные решения, размещая подходящим образом ферзей с номерами от k до 8. Обозначим программу, которая это делает, через HR(k)[24]. Стратегия очень проста:
— мы пробегаем все поля на строке k,
— если поле свободно (т. е. не бьется уже поставленными ранее ферзями), то мы ставим на него ферзя k и решаем ту же задачу для k + 1.
При k = 8 задача проще всего. Не может быть более одного свободного столбца. Если он есть, то мы ставим туда последнего ферзя и записываем полученное таким образом решение. Если свободного столбца нет, то нет и решения.
Для задачи HR (k) необходимо знание состояния игры, получающегося после размещения первых k - 1 ферзей. Это предполагает по крайней мере, что известны столбцы, занятые этими ферзями. Может быть, следовало бы сказать больше. Обозначим символически «занять k, i» операцию, которая констатирует факт, что в столбце i на строке k помещен ферзь.
HR (k =
ДЛЯ i := 1 ДО 8 ВЫПОЛНЯТЬ
ЕСЛИ место k, i свободно ТО
занять k, i
ЕСЛИ k = 8 ТО выписать решение
ИНАЧЕ HR(к + 1)
КОНЕЦ_ЕСЛИ
освободить k, i
КОНЕЦ_ЕСЛИ
ВЕРНУТЬСЯ
Операция «освободить k, i» отменяет то, что делает операция «занять k, i». Для решения задачи нужно изложить последовательность инициализации, отмечающую, что ничего не сделано и ни один ферзь в игре не участвует, а затем вызвать HR (1).
Эта процедура рекурсивна, так как она обращается сама к себе. Тщательно изучите ее. Если вы исходите из гипотезы, что HR (k + 1) находит и выводит такие решения, у которых первые k ферзей стоят там, где они поставлены, то у вас не будет никаких затруднений в том, чтобы убедиться, что эта процедура совершенно правильна. Используйте крайние случаи: k = 8 и начальное обращение с k = 1.
Если у вас в наличии нет никакого другого языка, кроме Бейсика, или если вы раб своего языка до такой степени, что не желаете учить что-нибудь, кроме Бейсика, то вам придется писать итеративное решение. Это сложнее.
Будем исходить из наиболее общей ситуации. Пусть на шахматной доске уже размещено k - 1 ферзей. Обозначим это состояние буквой С (в смысле «самое общее состояние»). Это состояние раскладывается на три подсостояния:
— уже размещено по местам 8 ферзей (k - 1 = 8): состояние С8;
— на строке с номером k есть допустимое место для ферзя: состояние СОК;