Читаем Программирование игр и головоломок полностью

к ситуации

бббб..Хаааа

затем решите задачу для X и отправьте два последних а на их место.

Но таким способом вы не охватываете всех возможных случаев. Нужно найти решения в других частных случаях. Вы легко найдете, в каких.

Игра 30.

Это — типичная игра, которая анализируется методом систематического перебора всех возможных решений. Их гораздо меньше, чем может показаться, до такой степени, что в наиболее простых случаях все это выполнимо вручную. Так, для креста на рис. 23 есть (с точностью до симметрий) только три игровых хода.

Если вы поднимете шашку на пересечении двух ветвей креста, то следующие два хода вынуждены и вы проиграли. Если вы спустили шашку до низа креста, то у вас после этого есть выбор между двумя ходами и в любом случае вы проигрываете. Если вы перемещаете шашку на пересечении двух ветвей креста вправо (или влево), то следующий ход вынужден, а затем у вас есть выбор между тремя ходами, два из которых сразу проигрывают, а оставшийся выигрывает.

Тогда без колебаний составляйте:

— либо рекурсивное решение. У меня есть процедура, которая решает задачу с n шашками. Какова бы ни была начальная конфигурация, для любого возможного хода вы этот ход осуществляете и решаете задачу с n - 1 шашками;

— либо итеративное решение. Оно отличается от предыдущего только необходимостью восстанавливать игру при возвращении назад. Это приводит вас к вопросу о представлении игры. Возможностей много…

Игра 31.

Поскольку рекурсивное решение тащится по всем книгам, я его вам здесь и предлагаю: это избавит вас от поисков…

Нужно перенести диски со стержня номер н (начального) на конечный стержень номер к. Номер запасного стержня x (хранилища) таков, что н, к, x есть перестановка чисел 0, 1, 2, поэтому н + к + x = 3. Номер запасного стержня равен 3 - н - к. Чтобы решить задачу, перенесем n - 1 первых дисков со стержня н на стержень x с помощью Н(n - 1, к, 3 - к - н).

Затем мы переносим последний диск n с н на к, что обозначается

Р(n, н, к).

Эта процедура, которая реализует, например, сообщение

n ИДЕТ С н НА к

Наконец, мы переносим n - 1 первых дисков с запасного стержня на стержень к:

Н(n -1, 3 - н - к, к).

Нужен частный случай, не являющийся рекурсивным. Если диск всего один, то можно сразу перенести его от н к к:

Н(р, н, к) = ЕСЛИ р = 1 ТО Р(1, н, к) ИНАЧЕ Н(р - 1, н, 3 - н - к)

Р(р, н, к)

Н(р - 1, 3 - н - к, к)

КОНЕЦ_ЕСЛИ

Проще некуда. Как же может случиться, что находятся и такие, кому эта процедура внушает опасения? В том ли дело, что они не видят, как на самом деле двигаются шашки? Или дело в том, что они испытывают сомнения в правильности процедуры? Продумайте это решение: если оно составляет для вас задачу, то только потому, что вы не владеете рекурсией, и жаль, что это так…

Число ходов игры легко выводится из этой процедуры. Обозначим через f(p) число ходов, необходимых для игры с p дисками. Из рекурсивной процедуры следует, что

f(1) = 1,

f(p) = 2 * f(p - 1) + 1.

(Почему?) Исходя из этого, вы можете вычислить f(p) (на самом деле g(p) = f(p) + 1 имеет более простой закон построения, чем f(p). Образуйте сначала этот закон, найдите решение, а затем выведите закон для f(p)).

Чтобы доказать свойство, касающееся четности дисков, действуйте по индукции подходу вычислений. Предположите, что это свойство выполняется для Н(р - 1, …). Покажите, что от сюда следует его справедливость и для Н(р, …).

У вас не получается? Вот дополнительная помощь. Начнем с переноса р - 1 дисков на запасной стержень. Пока не передвинут (р - 1)-й диск, нп один диск не кладется непосредственно на диск с номером р, и требуемое свойство выполняется. Рассмотрим момент, когда р - 2 дисков находятся на одном стержне, диски с номерами р - 1 и р — на другом стержне, а третий стержень пуст, Вы перемещаете диск с номером р - 1. Теперь, поскольку нужно переместить первые р - 2 дисков на диск с номером р - 1, то диски будут оказываться на диске с номером р. Если мы помещаем диск с номером q на диск с номером р, то для того, чтобы образовать пирамиду дисков с номерами от q до 1 и иметь возможность переместить диск с номером q + 1, который отправится на диск с номером р - 1. Но требуемое свойство выполняется для р - 1 дисков, и поэтому четность диска q + 1 не может совпадать с четностью р - 1. Следовательно, она совпадает с четностью р. Следовательно, р и q имеют разные четности.

Потренируйтесь в доказательствах такого рода…

Игра 32.

Предыдущее рекурсивное решение имеет ту особенность, что она не включает в ход игры никакого представления этой игры. Если вы хотите представить игру на экране даже символическим образом, вам придется создавать представление игры самому.

Перейти на страницу:

Похожие книги

Основы программирования в Linux
Основы программирования в Linux

В четвертом издании популярного руководства даны основы программирования в операционной системе Linux. Рассмотрены: использование библиотек C/C++ и стан­дартных средств разработки, организация системных вызовов, файловый ввод/вывод, взаимодействие процессов, программирование средствами командной оболочки, создание графических пользовательских интерфейсов с помощью инструментальных средств GTK+ или Qt, применение сокетов и др. Описана компиляция программ, их компоновка c библиотеками и работа с терминальным вводом/выводом. Даны приемы написания приложений в средах GNOME® и KDE®, хранения данных с использованием СУБД MySQL® и отладки программ. Книга хорошо структурирована, что делает обучение легким и быстрым. Для начинающих Linux-программистов

Нейл Мэтью , Ричард Стоунс , Татьяна Коротяева

ОС и Сети / Программирование / Книги по IT
97 этюдов для архитекторов программных систем
97 этюдов для архитекторов программных систем

Успешная карьера архитектора программного обеспечения требует хорошего владения как технической, так и деловой сторонами вопросов, связанных с проектированием архитектуры. В этой необычной книге ведущие архитекторы ПО со всего света обсуждают важные принципы разработки, выходящие далеко за пределы чисто технических вопросов.?Архитектор ПО выполняет роль посредника между командой разработчиков и бизнес-руководством компании, поэтому чтобы добиться успеха в этой профессии, необходимо не только овладеть различными технологиями, но и обеспечить работу над проектом в соответствии с бизнес-целями. В книге более 50 архитекторов рассказывают о том, что считают самым важным в своей работе, дают советы, как организовать общение с другими участниками проекта, как снизить сложность архитектуры, как оказывать поддержку разработчикам. Они щедро делятся множеством полезных идей и приемов, которые вынесли из своего многолетнего опыта. Авторы надеются, что книга станет источником вдохновения и руководством к действию для многих профессиональных программистов.

Билл де Ора , Майкл Хайгард , Нил Форд

Программирование, программы, базы данных / Базы данных / Программирование / Книги по IT
Программист-прагматик. Путь от подмастерья к мастеру
Программист-прагматик. Путь от подмастерья к мастеру

Находясь на переднем крае программирования, книга "Программист-прагматик. Путь от подмастерья к мастеру" абстрагируется от всевозрастающей специализации и технических тонкостей разработки программ на современном уровне, чтобы исследовать суть процесса – требования к работоспособной и поддерживаемой программе, приводящей пользователей в восторг. Книга охватывает различные темы – от личной ответственности и карьерного роста до архитектурных методик, придающих программам гибкость и простоту в адаптации и повторном использовании.Прочитав эту книгу, вы научитесь:Бороться с недостатками программного обеспечения;Избегать ловушек, связанных с дублированием знания;Создавать гибкие, динамичные и адаптируемые программы;Избегать программирования в расчете на совпадение;Защищать вашу программу при помощи контрактов, утверждений и исключений;Собирать реальные требования;Осуществлять безжалостное и эффективное тестирование;Приводить в восторг ваших пользователей;Формировать команды из программистов-прагматиков и с помощью автоматизации делать ваши разработки более точными.

А. Алексашин , Дэвид Томас , Эндрю Хант

Программирование / Книги по IT