— либо вы не в состоянии добраться до цели вследствие некоторого влияния структуры данных на стратегию. Такое бывает. Когда вы не можете продвинуться дальше в разработке стратегии, тогда начинайте с выбора представления данных, в котором вам послужит все то, что вы уже сделали к этому времени, и вы учтете то, что вас остановило.
Программирование всегда должно идти нисходящим путем. Сначала — алгоритм или стратегия. Потом — структура данных.
Посмотрим, какие структуры данных возможны в нашей задаче. Первая, наиболее естественная идея: я представляю шахматную доску с помощью квадратной таблицы с 8 строками и 8 столбцами. Я ставлю нули на пустые клетки. Чтобы найти свободное поле на строке, я перебираю поле за полем на строке, пока не нахожу поле с нулем. Это просто. Но как теперь занять поле
Но как же иначе? Если что и составляет существенную необходимость, то именно знание, можно использовать поле или нет. Как бы я поступил при работе вручную? Выяснил бы, есть ли ферзи в том же столбце или на диагоналях, проходящих через это поле. Следовательно, мне достаточно знать состояние занятости столбцов и диагоналей. Я могу найти выход с помощью трех таблиц: одна — для столбцов, другая — для левых диагоналей, третья — для правых диагоналей. Чтобы узнать, свободно ли поле, я стану выяснять, свободны ли проходящие через него диагонали и столбец. Чтобы занять поле, я отмечу, что его столбец и диагонали заняты. Чтобы его освободить, я отмечу, что они свободны. Циклов больше нет. Вот хорошее решение.
Таким образом, нужен вектор с 8 полями, чтобы сказать, свободны ли столбцы. Обозначим этот вектор
Диагонали характеризуются тем условием, что сумма или разность номеров строки и столбца постоянны. Обозначим через
Но при 1 =
Операция «искать первое свободное поле…» реализуется маленьким циклом в программе. Вот — на псевдоязыке, используемом в этой книге и близком к Бейсику, LSE и языку Паскаль, — что из всего этого получается:
ТАБЛИЦА с[8], ст[8], дп[15], дм[15]
ДЛЯ
ст[j] = 0
ВЕРНУТЬСЯ
ДЛЯ
дп[
ВЕРНУТЬСЯ
С
И
ВЫПОЛНЯТЬ
ЕСЛИ
КОНЕЦ_ЕСЛИ
ЕСЛИ ст[
дм[
КОНЕЦ_ЕСЛИ
ВЕРНУТЬСЯ
ЕСЛИ i = 9 ТО ПЕРЕЙТИ К СБ КОНЕЦ_ЕСЛИ
СОК
ЕСЛИ
ПЕРЕЙТИ К СБ КОНЕЦ_ЕСЛИ
ст[
дм[
ПЕРЕЙТИ К С
СБ
ЕСЛИ
дм[
ПЕРЕЙТИ К И
Я КОНЕЦ_РАБОТЫ
У вас теперь есть все, что только может быть вам нужно для того, чтобы это заработало на вашем компьютере.
Что касается симметрии, то вот указание. Эта программа заставляет первого ферзя пробежать всю первую строку. Но достаточно, чтобы он пробежал половину, а затем дополнить результат по симметрии. Остановить пробег, когда
Я не знаю простого решения для симметрии относительно диагонали. Если вы найдете такое решение, напишите мне…
Головоломка 21.