Индексаторы можно создавать и для многомерных массивов. В качестве примера ниже приведен двумерный отказоустойчивый массив. Обратите особое внимание на объявление индексатора в этом примере. // Двумерный отказоустойчивый массив. using System; class FailSoftArray2D { int[,] a; // ссылка на базовый двумерный массив int rows, cols; // размеры массива public int Length; // открытая переменная длины массива public bool ErrFlag; // обозначает результат последней операции // Построить массив заданных размеров. public FailSoftArray2D(int r, int с) { rows = r; cols = с; а = new int[rows, cols]; Length = rows * cols; } // Это индексатор для класса FailSoftArray2D. public int this[int index1, int index2] { // Это аксессор get. get { if(ok(index1, index2)) { ErrFlag = false; return a[index1, index2]; } else { ErrFlag = true; return 0; } } // Это аксессор set. set { if(ok(index1, index2)) { a[index1, index2] = value; ErrFlag = false; } else ErrFlag = true; } } // Возвратить логическое значение true, если // индексы находятся в установленных пределах. private bool ok(int index1, int index2) { if (index1 >= 0 & index1 < rows & index2 >= 0 & index2 < cols) return true; return false; } } // Продемонстрировать применение двумерного индексатора. class TwoDIndexerDemo { static void Main { FailSoftArray2D fs = new FailSoftArray2D(3, 5); int x; // Выявить скрытые сбои. Console.WriteLine("Скрытый сбой."); for (int i=0; i < 6; i++) fs[i, i] = i*10; for(int i=0; i < 6; i++) { x = fs[i,i]; if(x != -1) Console.Write(x + " "); } Console.WriteLine; // А теперь показать сбои. Console.WriteLine("\nСбой с уведомлением об ошибках."); for(int i=0; i < 6; i++) { fs[i,i] = i*10; if(fs.ErrFlag) Console.WriteLine("fs[" + i + ", " + i + "] вне границ"); } for(int i=0; i < 6; i++) { x = fs[i,i]; if(!fs.ErrFlag) Console.Write(x + " "); else Console.WriteLine("fs[" + i + ", " + i + "] вне границ"); } } }
Вот к какому результату приводит выполнение этого кода: Скрытый сбой. 0 10 20 0 0 0 Сбой с уведомлением об ошибках. fs[3, 3] вне границ fs[4, 4] вне границ fs[5, 5] вне границ 0 10 20 fs[3, 3] вне границ fs[4, 4] вне границ fs[5, 5] вне границ Свойства
Еще одной разновидностью члена класса является свойство. Как правило, свойство сочетает в себе поле с методами доступа к нему. Как было показано в приведенных ранее примерах программ, поле зачастую создается, чтобы стать доступным для поль зователей объекта, но при этом желательно сохранить управление над операциями, разрешенными для этого поля, например, ограничить диапазон значений, присваи ваемых данному полю. Этой цели можно, конечно, добиться и с помощью закрытой переменной, а также методов доступа к ее значению, но свойство предоставляет более совершенный и рациональный путь для достижения той же самой цели.
Свойства очень похожи на индексаторы. В частности, свойство состоит из имени и аксессоров get и set. Аксессоры служат для получения и установки значения пере менной. Главное преимущество свойства заключается в том, что его имя может быть использовано в выражениях и операторах присваивания аналогично имени обычной переменной, но в действительности при обращении к свойству по имени автоматиче ски вызываются его аксессоры get и set. Аналогичным образом используются аксес соры get и set индексатора.
Ниже приведена общая форма свойства: тип имя { get { // код аксессора для чтения из поля } set { // код аксессора для записи в поле }
где тип обозначает конкретный тип свойства, например int, а имя — присваиваемое свойству имя. Как только свойство будет определено, любое обращение к свойству по имени приведет к автоматическому вызову соответствующего аксессора. Кроме того, аксессор set принимает неявный параметр value, который содержит значение, при сваиваемое свойству.
Следует, однако, иметь в виду, что свойства не определяют место в памяти для хра нения полей, а лишь управляют доступом к полям. Это означает, что само свойство не предоставляет поле, и поэтому поле должно быть определено независимо от свойства. (Исключение из этого правила составляет автоматически реализуемое свойство, рассма триваемое далее.)