Именно по этой формуле Бернштейн в 1912 году рассчитал величину потенциала покоя для К+ совпавшую с экспериментально измеренным потенциалом между саркоплазмой мышцы и окружающей средой, который составлял около – 70 мВ.
Оставалось экспериментально доказать наличие биоэлектрогенеза в живой клетке.
До современного представления о распространении нервного импульса оставались считаные шаги, но ещё многие годы исследования.
«Язык головного мозга». Гассер и Эрлангер
Ещё в 1868 году молодой немецкий физиолог Юлиус Бернштейн с помощью изобретённого им дифференциального реотома сумел определить форму нервного импульса. Она оказалась колоколообразной.
Спустя несколько десятилетий, в начале 1900-х американский учёный Герберт Гассер (
Гассер понимал, что для регистрации амплитуды нервного импульса нужен более современный прибор, чем гальванометр. Этот прибор должен был одновременно прочитать все параметры электрического сигнала, визуализировать и записать их на ленту. Говоря современным языком, учёный нуждался в осциллографе.
Различные варианты осциллографов начали появляться с 1880 года и к 1920 году прибор представлял собой катодную трубку – аналог электроннолучевых кинескопов, которые применялись в наших телевизорах до появления плазм и ЖК-экранов.
У Гассера не получилось договориться с компанией-производителем и получить их прибор, поэтому они с Эрлангером создали собственную электровакуумную трубку из колбы для дистилляции воды. Именно таким самодельным осциллографом учёные зарегистрировали первую в мире осциллограмму с записью электрических импульсов, возникающих в нервных клетках.
В периферической нервной системе отдельные волокна объединены в нервные стволы (нервы). В одном нерве могут быть тысячи нервных волокон. Волокна в нервах могут быть миелиновыми и безмиелиновыми. В естественных условиях каждое волокно возбуждается от своего источника, и электрические потенциалы в них проводятся несогласованно. Кроме того, по чувствительным (афферентным) и двигательным (эфферентным) волокнам импульсы бегут на встречу друг другу. Результирующая электрическая активность нерва создаётся электрической активностью всех составляющих его волокон. В связи с этим анализ суммарной электрической активности нерва (нейрограммы) представлял трудную задачу. Учёные поначалу зафиксировали только «белый шум» на экране осциллографа, но догадались, что – это не что иное, как совокупность электрических импульсов от множества нейронов. Ведь измерения проводились не на отдельном нейроне, а на нерве, похожем на многожильный кабель.
Они предположили, а потом и доказали, что скорость проведения электрического потенциала зависит от толщины нервного волокна. Чем тот толще, тем быстрее способен передавать сигнал. Такое предположение впервые выдвинул шведский физиолог Густав Гётлин ещё в 1907 году, но с тех пор никто не пытался проверить или опровергнуть его.
Для наглядности классификации Гассер свёл все параметры в единую таблицу, которую и поныне можно найти в медицинских справочниках.
Эти опыты значительно продвинули учёных в понимании механизма прохождения нервного импульса и легли в основу нейрофизиологии. Все полученные све́дения позднее были применены в модели нервной проводимости, разработанной Аланом Ходжкином и Эндрю Хаксли в 1952 году.
В 1937 годe Гассер и Эрлангер опубликовали совместную книгу «Электрическая регистрация нервной деятельности». А в 1944 им вручили Нобелевскую премию «за открытия, имеющие отношение к высокодифференцированным функциям отдельных нервных волокон». Церемонию награждения во время Второй мировой войны не проводили, только по радио транслировали поздравительную речь. Но в 1947 году они всё же прочитали свои Нобелевские лекции «Нервные волокна млекопитающих» в Стокгольме.
Кабельная теория и подводные кабельные линии
Проводя своё расследование источников современных представлений о нейроне, я раскопал и эту историю. Она показалась мне настолько интересной, что рискнул вам о ней рассказать.