…Это случилось в 1834 году. Джон Скотт Рассел (
Вот как он описал его в своём Докладе о волнах: «Я следил за движением баржи, которую быстро тянула по узкому каналу пара лошадей, когда баржа неожиданно остановилась. Но масса воды, которую баржа привела в движение, собралась около носа судна в состоянии бешеного движения, затем неожиданно оставила его позади, катясь вперёд с огромной скоростью и принимая форму большого одиночного возвышения – округлого, гладкого и чётко выраженного водяного холма. Он продолжал свой путь вдоль канала, нисколько не меняя своей формы и не снижая скорости. Я последовал за ним верхо́м, и когда нагнал его, он по-прежнему катился вперёд со скоростью примерно 8—9 миль в час, сохранив свой первоначальный профиль возвышения длиной около тридцати футов и высотой от фута до полутора футов. Его высота постепенно уменьшалась, и после одной или двух миль погони я потерял его в изгибах канала». [52]
Рассел назвал обнаруженное им явление «уединённой волной трансляции». Однако его сообщение было встречено с недоверием, признанные корифеи в области гидродинамики – Джордж Биддель Эйри (George Biddell Airy; 1801—1892) и Джордж Габрие́ль Стокс (Stokes, George Gabriel; 1819—1903), утверждали на основании общепринятых в то время уравнений гидромеханики, что волны при распространении на значительные расстояния не могут сохранять свою форму.
Признание уединённой волны случилось ещё при жизни Рассела трудами нескольких математиков, которые доказали, что существовать она может, а, кроме того, были повторены и подтверждены опыты самого Рассела. Но дискуссии по поводу солитона ещё долго не прекращались – слишком велик был авторитет Эйри и Стокса.
Позже, учёные следующего поколения Жозеф Валентин де Буссинеск и его сверстник лорд Рэлей сумели найти приближённое математическое описание формы и скорости уединённой волны на мелкой воде. Вскоре появились ещё две – три математические работы об уединённой волне, а также вновь были повторены и подтверждены опыты Рассела.
Итоговую черту под спором подвели голландские математики Дидерик Иоханнес Кортевег (Diederik Johannes Korteweg, 1848 – 1941) и его ученик Густав де Фриз (Gustav de Vries, 1866 – 1934). В 1895 году, спустя тринадцать лет после смерти Рассела, они нашли точное уравнение, волновые решения которого полностью описывало происходящие процессы. В первом приближении это можно пояснить следующим образом. Волны Кортевега – де Фриза имеют несинусоидальную форму и становятся синусоидальными только в том случае, когда их амплитуда очень мала. При увеличении длины волны вершины синусоиды приобретают вид далеко разнесённых друг от друга горбов, а при очень большой длине волны остаётся один горбик, который и соответствует «уединённой» волне. Уравнение Кортевега – де Фриза (КдФ-уравнение) было по-настоящему оценено уже в наши дни, когда физики поняли его универсальность и возможность применения к волнам различной природы. Самое главное то, что оно описывает процесс распространения
В теории обычных волн фундаментальное значение имеет волновое уравнение. Не вдаваясь в высшую математику, отметим лишь, что и функция, описывающая волну, и связанные с ней переменные содержатся в нём в первой степени. Такие уравнения называются линейными. Решением волнового уравнения служит линейная гармоническая (синусоидальная) волна. То есть термин линейная употребляется здесь не в геометрическом смысле (синусоида – не прямая линия), а в смысле использования первой степени величин в волновом уравнении. [51]
Линейные волны подчиняются принципу суперпозиции (сложения). Это означает, что при наложении нескольких линейных волн результирующая волна представляет собой простую сумму исходных волн. Так происходит потому, что каждая волна распространяется в среде независимо от прочих, между ними нет ни обмена энергией, ни иного взаимодействия, они свободно проходят друг сквозь друга. В большинстве случаев это справедливо для световых, звуковых и радиоволн, и даже для волн, которые рассматриваются в квантовой теории. Но для волн в жидкости это верно только при сложении волн очень маленькой амплитуды. Дело в том, что уравнения гидродинамики нелинейны.