21. Marr, D. (1976), Cold Spring Harbor Symposia on Quantitative Biology 40:647–62, p. 653; Marr, D. and Hildreth, E. (1980), Proceedings of the Royal Society: Biological Sciences 207:187–217; Martinez-Conde, S., et al. (2018), Trends in Neurosciences 41:163–5.
22. Greene, M. and Hansen, B. (2018), PLoS Computational Biology 14:e1006327.
23. Stevens (2012), p. 1071.
24. Chang, L. and Tsao, D. (2017), Cell 169:1013–28.
25. Landi, S. and Freiwald, W. (2017), Science 357:591–5.
26. Abbott, A. (2018), Nature 564:176–9, p. 179.
27. Kadipasaoglu, C., et al. (2017), PLoS One 12:e0188834.
28. Ponce, C., et al. (2019), Cell 177:999–1009.
29. Bashivan, P., et al. (2019), Science 364:eaav9436.
30. Carrillo-Reid, L., et al. (2019), Cell 178:447–57; Marshel, J., et al. (2019), Science 365:eaaw5202.
31. Rumelhart, D., et al. (eds.) (1986), Parallel Distributed Processing: Explorations in the Microstructure of Cognition, vol. 1: Foundations; vol. 2: Psychological and Biological Models (Cambridge, MA: MIT Press); Anderson, J. and Rosenfeld, E. (eds.) (1998), Talking Nets: An Oral History of Neural Networks (Cambridge, MA: MIT Press).
32. Sejnowski, T. (2018), The Deep Learning Revolution (London: MIT Press), p. 118.
33. Crick, F. (1989), Nature 337:129–32, p. 130.
34. Crick, F. (1994), The Astonishing Hypothesis: The Scientific Search for the Soul (New York: Charles Scribner’s Sons), p. 186.
35. Sejnowski, T. and Rosenberg, C. (1987), Complex Systems 1:145–68.
36. Rumelhart, D. and McClelland, J. (1986), in D. Rumelhart, et al. (eds.), Parallel Distributed Processing: Explorations in the Microstructure of Cognition, vol. 1: Foundations (Cambridge, MA: MIT Press), pp. 216–71.
37. Le, Q., et al. (2016), https://ai.google/research/pubs/pub38115.
38. Hochreiter, S. and Schmidhuber, J. (1997), Neural Computation 9:1735–80; LeCun, Y., et al. (2015), Nature 521:436–44.
39. Banino, A., et al. (2018), Nature 557:429–33.
40. Rajalingham, R., et al. (2018), Journal of Neuroscience 38:7255–69; Gangopadhyay, P. and Das, J. (2019), Journal of Neuroscience 39:946–8.
41. Marcus, G. (2015), in G. Marcus and J. Freeman (eds.), The Future of the Brain: Essays by the World’s Leading Neuroscientists (Oxford: Princeton University Press), pp. 204–15, p. 206.
42. Hassabis, D., et al. (2017), Neuron 95:245–58.
43. Silver, D., et al. (2016), Nature 529:484–9.
44. O ’Doherty, J., et al. (2003), Neuron 38:329–37.
45. Caron, S., et al. (2013), Nature 497:113–17.
46. Aso, Y., et al. (2014), Elife 3:e04577.
47. Thum, A. and Gerber, B. (2019), Current Opinion in Neurobiology 54:146–54.
48. Ullman, S. (2019), Science 363:692–3. Призыв к занимающимся системной нейробиологией уделять больше внимания результатам программ глубокого обучения: Richards, B. (2019), Nature Neuroscience 22:1761–70.
49. Sejnowksi and Rosenberg (1987), p. 157.
50. Hutson, M. (2018), https://tinyurl.com/AI-alchemy. Некоторое представление о раздраженной реакции аудитории: Sejnowski, T. (2015), Daedalus 144:123–32, p. 122.
51. https://tinyurl.com/Hinton-quote.
52. Crick (1989). В 1963 году он опубликовал статью о прорывах в молекулярной генетике под названием «Недавнее волнение в связи с проблемой кодирования».
53. Там же, p. 130.
54. Там же, p. 132.
55. Husbands, P., et al. (1998), Connection Science 10:185–210.
56. Lillicrap, T., et al. (2016), Nature Communications 7:13276.
57. LeCun et al. (2015).
58. Wilson, M. and Bower, J. (1992), Journal of Neurophysiology 67:981–95.
59. Bower, J. (1994), in J. Bower and D. Beeman (eds.), The Book of GENESIS: Exploring Realistic Neural Models with the GEneral Neural SImulation System (New York: Springer-Verlag/TELOS), pp. 195–202, p. 196.
60. Markram, H., et al. (2011), Procedia Computing Science 7:39–42, p. 40.
61. Kandel, E., et al. (2013), Nature Neuroscience 14:659–66, p. 659; Hill, S. (2015), in G. Marcus and J. Freeman (eds.), The Future of the Brain: Essays by the World’s Leading Neuroscientists (Oxford: Princeton University Press), pp. 111–24.