50. Hodgkin, A. and Huxley, A. (1952), Proceedings of the Royal Society of London B 140:177–83.
51. Kandel (2006), p. 147.
52. Hesse, R., et al. (2019), https://www.biorxiv.org/content/10.1101/ 631556v1; Asok, A., et al. (2019), Trends in Neuroscience 42:14–22.
53. McConnell, J., et al. (1959), Journal of Comparative and Physiological Psychology 52:1–5; Travis, G. (1981), Social Studies of Science 11:11–32.
54. Morange, M. (2006), Journal of Bioscience 31:323–7.
55. Byrne, W., et al. (1966), Science 153:658–9.
56. Malin, D. and Guttman, H. (1972), Science 178:1219–20.
57. Ungar, G., et al. (1972), Nature 238:198–202.
58. Stewart, W. (1972), Nature 238:202–9.
59. Wilson, D. (1986), Nature 320:313–14.
60. Irwin, L. (2007), Scotophobin: Darkness at the Dawn of the Search for Memory Molecules (Plymouth: Hamilton); Setlow, B. (1997), Journal of the History of the Neurosciences 6:181–92.
61. Nye, M. (1980), Historical Studies in the Physical Sciences 11:125–56.
62. Shomrat, T. and Levin, M. (2013), Journal of Experimental Biology 216:3799–810.
63. Bliss, T. and Lomo, T. (1973), Journal of Physiology 232:331–56.
64. Lomo, T. (2017), Acta Physiologica 222:e12921.
65. Cooke, S. and Bliss, T. (2006), Brain 129:1659–73.
66. Bliss, T. and Collingridge, G. (1993), Nature 361:31–9.
67. Cooke and Bliss (2006).
68. Nabavi, S., et al. (2014), Nature 511:348–52; Titley, H., et al. (2017), Neuron 95:19–32.
69. Ryan, T., et al. (2015), Science 348:1007–13.
70. Tonegawa, S., et al. (2018), Nature Reviews Neuroscience 19:485–98.
71. Crick, F. (1982), Trends in Neuroscience 5:44–6.
72. Roberts, T., et al. (2010), Nature 463:948–52; Hayashi-Takagi, A., et al. (2015), Nature 525:333–8.
73. Adamsky, A., et al. (2018), Cell 174:59–71.
74. Доступны и другие формы обучения – см. Tonegawa et al. (2018).
75. Han, J., et al. (2009), Science 323:1492–6.
76. Ramirez, S., et al. (2013), Science 341:387–91.
77. Redondo, R., et al. (2014), Nature 513:426–30.
78. Ramirez, S., et al. (2015), Nature 522:335–9.
79. Vetere, G., et al. (2019), Nature Neuroscience 22:933–40.
80. Saunders, B., et al. (2018), Nature Neuroscience 21:1072–83.
81. Phelps, E. and Hofmann, G. (2019) Nature 572:43–50.
82. Liu, X., et al. (2014), Philosophical Transactions of the Royal Society of London: B 369:20130142.
83. Poo, M.-M., et al. (2016), BMC Biology 14:40.
11. Нейронные цепи. 1950-е – настоящее время
1. Hubel, D. and Wiesel, T. (2005), Brain and Visual Perception: The Story of a 25-Year Collaboration (Oxford: Oxford University Press), p. 60; Hubel, D. and Wiesel, T. (1959), Journal of Physiology 148:574–91; Hubel, D. and Wiesel, T. (2012), Neuron 75:182–4.
2. Barlow, H. (1953), Journal of Physiology 119:69–88.
3. Lorente de No, R. (1938), Journal of Neurophysiology 1:207–44.
4. Mountcastle, V. (1957), Journal of Neurophysiology 20:408–34.
5. Lettvin et al. (1959); Maturana, H., et al. (1960), Journal of General Physiology 43:129–76.
6. Spinelli, D., et al. (1968), Experimental Neurology 22:75–84; Cayco-Gajic, N. and Sweeney, Y. (2018), Journal of Neuroscience 38:6442–4.
7. Blakemore, C. and Cooper, G. (1970), Nature 228:477–8.
8. Hebb (1949), p. 31.
9. Gross, C. (2002b), The Neuroscientist 8:512–18; проницательное исследование истории и философских основ «бабушкиной клетки»: Barwich, A.-S. (2019) Frontiers in Neuroscience 13:1121.
10. Konorski, J. (1967), Integrative Action of the Brain: A Multidisciplinary Approach (Chicago: University of Chicago Press); Gross (2002b).
11. Gross, C., et al. (1972), Journal of Neurophysiology 35:96–111.
12. Gross, C., et al. (1969), Science 166:1303–6; Gross, C. (1998), Brain, Vision, Memory: Tales in the History of Neuroscience (London: MIT Press).
13. Perrett, D., et al. (1982), Experimental Brain Research 47:329–42; Kendrick, K. and Baldwin, B. (1987), Science 236:448–50.
14. Kendrick and Baldwin (1987), p. 450.
15. Quian Quiroga, R., et al. (2005), Nature 435:1102–7.