Целый ряд примечательных данных по растениям и животным, полученных совсем недавно, указывает на то, что эукариоты используют обратную транскрипцию для интеграции ДНК-копий генома РНК вирусов в хромосомы и могут затем использовать эти встроенные последовательности для производства миРНК или белков, обеспечивающих устойчивость к соответствующим вирусам (Feschotte, 2010; Horie et al., 2010; Koonin, 2010c). Эти механизмы еще предстоит исследовать более тщательно, но по идее они должны быть аналогичны CRISPR и, следовательно, являются ламарковскими.
Горизонтальный перенос генов: важная ламарковская составляющая
Одним из главных открытий сравнительной геномики является демонстрация широкого распространения и высокой частоты горизонтального переноса генов среди прокариот, а также значительного уровня горизонтального переноса у одноклеточных эукариот (см. гл. 5 и 7). Прокариоты с легкостью усваивают ДНК из окружающей среды с помощью фагов и плазмид, служащих векторами, или же без векторов, через механизм трансформации, при участии мембранных насосов, специализирующихся на захвате ДНК.
Поглощенная ДНК часто интегрируется в хромосомы прокариот и может быть зафиксирована в популяции, даже если перенесенный генетический материал дает получателю совсем небольшое селективное преимущество или будучи вовсе нейтральным. Явление горизонтального переноса обладает очевидными ламарковскими признаками: ДНК черпаются из окружающей среды, и, естественно, вероятность приобретения генов, которые находятся в изобилии в данной среде, гораздо выше, чем вероятность захвата редкого гена. Второй компонент схемы Ламарка, повышение приспособленности за счет приобретенного признака, не реализуется во всех случаях фиксации горизонтального переноса, однако является значимым и достаточно обычным явлением.
Пожалуй, самый простой и привычный пример – эволюция резистентности к антибиотикам (Martinez, 2008; Wright, 2007). Когда чувствительная бактерия попадает в среду, где присутствуют антибиотики, единственный шанс для пришельца выжить заключен в приобретении гена устойчивости путем горизонтального переноса, как правило через плазмиды. Этот распространенный (и исключительно важный в практическом плане) феномен представляет собой ярко выраженный пример наследования по Ламарку. В самом деле, признак – в этом случае активность перенесенного гена, способствующего резистентности к антибиотикам, – приобретается под непосредственным влиянием окружающей среды и очевидным образом оказывается выгодным – часто необходимым в данных конкретных условиях.
Похожая картина наблюдается для генов фотосинтеза в океане: гены бактериородопсина, главного белка светозависимой биоэнергетики (протон-движущей силы) в галофильных археях, а также в многочисленных бактериях, как и гены фотосистем первого и второго типа, участвующие в хлорофиллзависимом фотосинтезе, судя по всему, распространяются горизонтальным переносом с высокой скоростью, часто посредством бактериофагов, выступающих в качестве переносчиков (Alperovitch-Lavy et al., 2011; Falkowski et al., 2008; Sullivan et al., 2006). Эти гены наделяют организм обладателя серьезным селективным преимуществом, так что они фиксируются с высокой частотой.
В целом любой случай горизонтального переноса, при котором приобретенный ген дает реципиенту преимущество с точки зрения воспроизводства в данной среде (которая благоприятствует передаче такого гена), по-видимому, удовлетворяет ламарковским критериям. Исследования по сравнительной геномике показывают, что горизонтальный перенос служит основным способом адаптации бактерий к окружающей среде путем расширения метаболических и сигнальных сетей, куда интегрируются новые горизонтально приобретенные гены и, таким образом, добавляют новые свойства в уже существующие схемы (Maslov et al., 2009). Количественно горизонтальный перенос, с его ламарковской компонентой, оказывается у прокариот гораздо более важным средством адаптации, нежели дупликация генов (Pal et al., 2005).